General Chemistry II Problem Set 1

- 1. Define electronegativity.
- 2. Draw the complete molecular structure (showing all atoms and bonds) and use electronegativity differences to show the major partial charges found on individual atoms in the following molecules:
 - a. HCl
 - b. C₄H₉Li
 - c. CH₃OH
 - d. OF₂
 - e. CH₃COOH
- 3. Write the complete electron configuration for each of the following: P, N, and Cu⁺.
- 4. Draw Lewis structures for each of the following show all bonds, nonbonding pairs, atoms, and nonzero formal charges:
 - a. $N(CH_3)_4^+$
 - b. CH₂CHCH₃
 - c. CH₂OHCHOHCH₂OH
 - d. Glycerol
 - e. CCl₃COO⁻

H₃C f. CF₂HCHO

- g. NH₂NH₂ h. CH₃CONH₂
- i. C₂H₅OCH₃
- 5. Draw the Lewis structure for each of the following molecules; identify the hybridization and the bond angles for each carbon or oxygen atom.
 - a. C₂H₂

b. C₂H₄

- c. C_2H_6
- ⊣₀ d. H₂CO
- 6. N-octane and 2,2,4-trimethyl pentane both have the same molecular formula C_8H_{18} .
 - a. Draw the molecular structure for each of these compounds showing all bonds and atoms.
 - b. Look up the boiling points for each of these and explain why they are different; to support your answer, include a diagram showing the attractions that have to be broken for these individual substances to boil.

c. Compare the vapor pressures of these two substances and fully support your prediction.

- 7. Use the exponential portion of the Arrhenius equation to:
 - a. Calculate the fractions of gaseous argon atoms that have a kinetic energy greater than 10 kJ/mole at a temperature of 10,000 K and at a temperature of 298K.
 - b. Calculate the fractions of gaseous argon atoms that have a kinetic energy greater than 500 kJ/mole at a temperature of 10,000 K and at a temperature of 298K.
- 8. Sketch a kinetic molecular distribution plot for two temperatures and shade in the areas having a kinetic energy greater than an arbitrary activation energy. Then use this illustration to clearly explain why chemical reactions occur faster at higher temperatures.
- 9. Draw Lewis structures for the given bases and their respective conjugate acids:

a. Trimethyl amine.

- b. Cyanide ion.
- c. Hydrogen phosphate ion.

H₀C d. Carbonate ion

10. Draw Lewis structures for the given acids and their respective conjugate bases:

a. Phosphoric acid

b. Carbonic acid.

c. Butanoic acid

11. Use the Henderson-Hasselbalch equation to determine the relative amounts of acetic acid and the acetate ion at each of the given pH's:

a. pH = 1.4

b. pH = 5.6.

- c. pH = 4.74
- 12. Look up the two pKas for alanine and use your understanding of the Henderson-Hasselbalch equation to draw the Lewis structure for the most concentrated form of alanine at each of the following pHs:
 - b. pH[⊆][−]7.4

o a. pH = 1.0

