1. Complete these tables; bond angles refer to angles around the central atom.

Molecule	OPF ₃	AlCl ₃	HNO ₃	TeF ₄	ClF ₃
# Valence Elect.					
Lewis Structure (include all nonzero formal charges)					
Elect.Arrangement					
Molecular Geom.					
Bond Angle(s)					
Hybridization					
Polar/Nonpolar					
# sigma bonds					
# pi (π) bonds					
Bond Order					

Molecule	BrI ₅	CF ₂ CF ₂	ClO ₃ -	CH ₃ COCH ₃	H ₂ CCCH ₂
# Valence Elect					
Lewis Structure (include all nonzero formal charges)					
Elect.Arrangement					
Molecular Geom.					
Bond Angle(s)					
Hybridization					
Polar/Nonpolar					
# sigma bonds					
# pi (π) bonds					
Bond Order					

- 2. Use the exponential portion of the Arrhenius equation to:
 - a. Calculate the fractions of gaseous argon atoms that have a kinetic energy greater than 10 kJ/mole at a temperature of 10,000 K and at a temperature of 298K.
 - b. Calculate the fractions of gaseous argon atoms that have a kinetic energy greater than 500 kJ/mole at a temperature of 10,000 K and at a temperature of 298K.
- 3. Sketch a kinetic molecular distribution plot for two temperatures and shade in the areas having a kinetic energy greater than an arbitrary activation energy. Then use this illustration to clearly explain why chemical reactions occur faster at higher temperatures.
- 4. McQuarrie 23-81
- 5. McQuarrie 23-85
- 6. For diatomic bromine, use thermodynamic data in Appendix D to predict:
 - a. Its normal boiling point temperature.
 - b. Its vapor pressure at 298K.