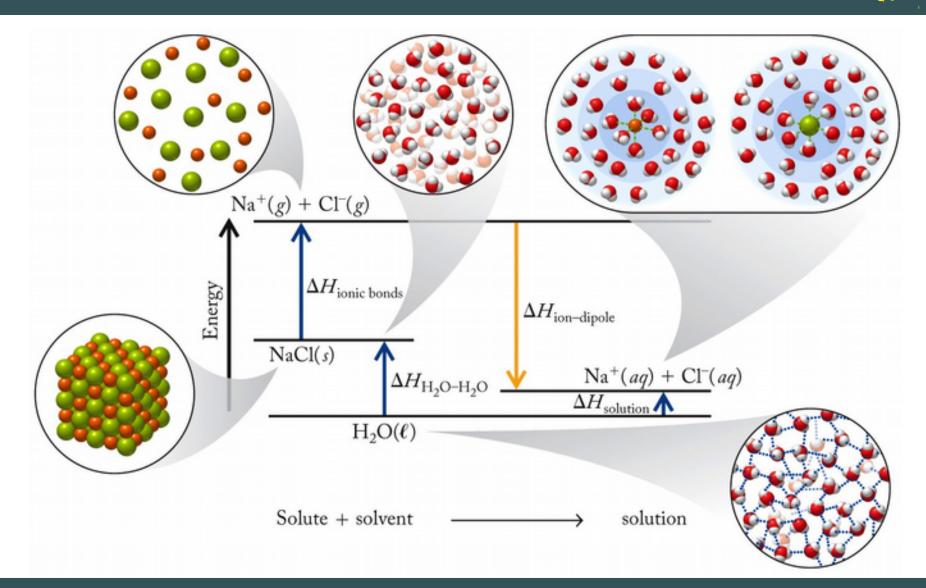

CHEMSTRY Gilbert an atoms-focused approach Foster

Chapter 11 Properties of Solutions Their Concentrations and Colligative Properties

Chapter Outline

- 11.1 Energy Changes when Substances Dissolve
- 11.2 Vapor Pressure
- 11.3 Mixtures of Volatile Substances
- 11.4 Colligative Properties of Solutions
- 11.5 Osmosis and Osmotic Pressure
- 11.6 Using Colligative Properties to Determine Molar Mass



Enthalpy of Solution

- Dissolution of Ionic Solids:
 - Enthalpy of solution (ΔH_{soln}) depends on:
 - Energies holding solute ions in crystal lattice
 - Attractive force holding solvent molecules together
 - Interactions between solute ions and solvent molecules
 - $\Delta H_{\text{soln}} = \Delta H_{\text{ion-ion}} + \Delta H_{\text{d}}_{\text{pole-dipole}} + \Delta H_{\text{ion-dipole}}$
 - When solvent is water:
 - $\Delta H_{\text{soln}} = \Delta H_{\text{ion-ion}} + \Delta H_{\text{hydration}}$

Dissolution of Ionic Compound

© 2014 W. W. Norton Co., Inc.

Lattice Energy

- Lattice Energy (U):
 - Energy released when 1 mol of an ionic compound forms from its free ions in the gas phase

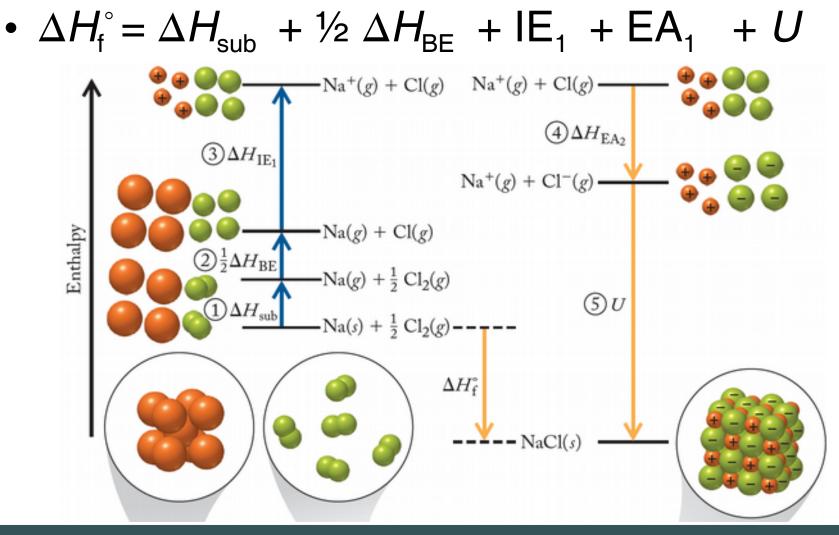
$$M^{+}_{(g)} + X^{-}_{(g)} \rightarrow MX(s)$$
$$U = \frac{k(Q_{1}Q_{2})}{d}$$

where *k* is proportionality constant and depends on lattice structure

- Lattice Energy (U): <u>Energy released</u> when crystal lattice is formed
- ∆H_{ion-ion} = <u>Energy required</u> to remove ions from crystal lattice

$$\Delta H_{\rm ion-ion} = -U$$

And:
$$\Delta H_{\text{soln}} = \Delta H_{\text{hydration}} - U$$


Born–Haber Cycle and Lattice Energy

= IE₁

- Born–Haber Cycle:
 - Series of steps with corresponding ∆Hs that describe the formation of an ionic solid from its elements
 - e.g., Na(s) + $\frac{1}{2}$ Cl₂(g) \rightarrow NaCl(s) ΔH_{f}° = -411.2 kJ
- Steps:
 - 1. Sublimation of 1 mol Na(s) \rightarrow Na(g) = ΔH_{sub}
 - 2. Breaking bonds of $\frac{1}{2}$ mol of $Cl_2(g) = \frac{1}{2} \Delta H_{BE}$
 - 3. Ionization of 1 mol Na(g) atoms
 - 4. Ionization of 1 mol CI(g) atoms = EA_1
 - 5. Formation of 1 mol NaCl(s) from ions(g) = U

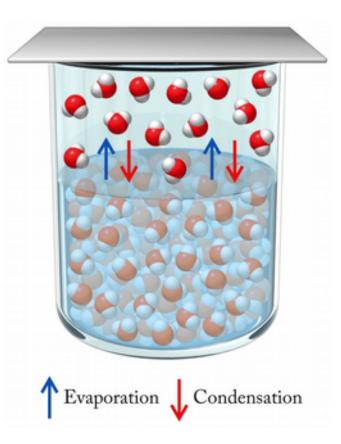
Born–Haber Cycle

© 2014 W. W. Norton Co., Inc.

Calculating U

$$\begin{split} & \mathsf{Na}^{+}(g) + e^{-}(g) \xrightarrow{} \mathsf{Na}(g) \xrightarrow{} -\Delta H_{\mathsf{lE1}} \\ & \mathsf{Na}(g)^{\rightarrow} \rightarrow \mathsf{Na}(s) \xrightarrow{} -\Delta H_{\mathsf{sub}} \\ & \mathsf{Cl}^{+}(g) \rightarrow \mathsf{Cl}(g)^{+} + e^{-}(g) \xrightarrow{} -\Delta H_{\mathsf{EA}} \\ & \mathsf{Cl}(g)^{\rightarrow} \rightarrow \mathsf{Ll}(g)^{+} + e^{-}(g) \xrightarrow{} -\Delta H_{\mathsf{EA}} \\ & \mathsf{Cl}(g)^{\rightarrow} \rightarrow l_{2}^{\prime}\mathsf{Cl}_{2}^{\prime}(g)^{\prime} \xrightarrow{} -l_{2}^{\prime}\Delta H_{\mathsf{BE}} \\ & \mathsf{Na}(s)^{+} + l_{2}^{\prime}\mathsf{Cl}_{2}^{\prime}(g)^{\prime} \rightarrow \mathsf{Na}\mathsf{Cl}(s) \quad \Delta H_{\mathsf{f}} \\ & \mathsf{Na}^{+}(g) + \mathsf{Cl}^{+}(g) \rightarrow \mathsf{Na}\mathsf{Cl}(s) \quad U \\ & U = \Delta H_{\mathsf{f}} - l_{2}^{\prime}\Delta H_{\mathsf{BE}} - \Delta H_{\mathsf{EA}} - \Delta H_{\mathsf{sub}} - \Delta H_{\mathsf{IE1}} \end{split}$$

TABLE 11.3	Enthalpies of Solution of Some Common Molecular Compounds in Water	
Compound	$\Delta H_{solution}$ (kJ/mol)	
HC1	-74.8	
NH ₃	-30.5	
CH ₃ CH ₂ OH	-10.6	
CH ₃ OH	-3.0	
CH ₃ COOH	-1.5	


Chapter Outline

- 11.1 Energy Changes when Substances Dissolve
- 11.2 Vapor Pressure
- 11.3 Mixtures of Volatile Substances
- 11.4 Colligative Properties of Solutions
- 11.5 Osmosis and Osmotic Pressure
- 11.6 Using Colligative Properties to Determine Molar Mass

Vapor Pressure of Solutions

• Vapor Pressure:

- Pressure exerted by a gas in equilibrium with liquid
- Rates of evaporation/condensation are equal
- Normal Boiling Point:
 - Boiling point when ambient pressure is standard pressure

Factors Affecting Vapor Pressure

- Temperature/Surface Area/Intermolecular forces (Discussed in Chapter 6):
 - Stronger forces = Higher E_k needed to enter gas phase.
- Presence of Nonvolatile Solute:
 - Affects rate of evaporation, decreases vapor pressure of solution compared to pure solvent

Clausius–Clapeyron Equation

• Clausius–Clapeyron Equation:

Relates vapor pressure of a substance to different temperatures to its heat of vaporization

$$\ln\left(\frac{P_{1}}{P_{2}}\right) = \frac{\Delta H_{vap}}{R} \left(\frac{1}{T_{2}} - \frac{1}{T_{1}}\right)$$

Chapter Outline

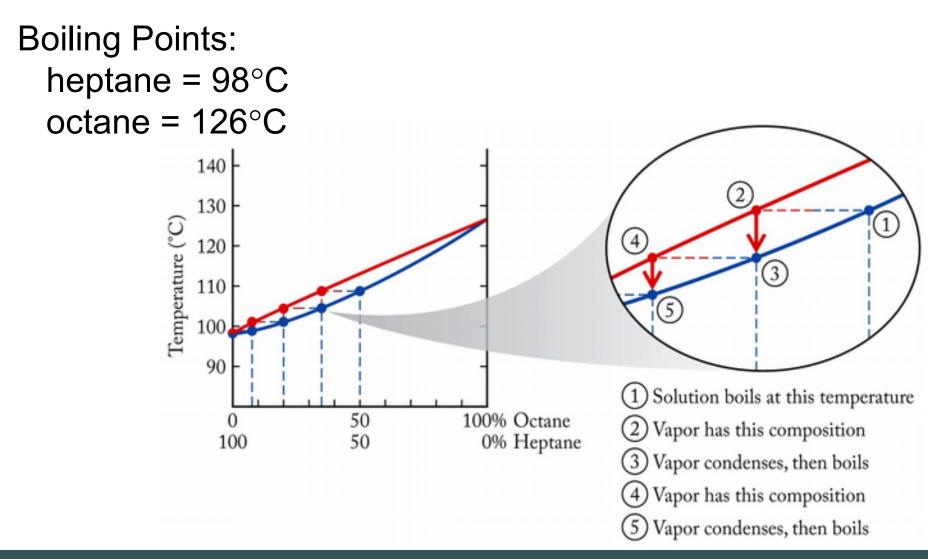
- 11.1 Energy Changes when Substances Dissolve
- 11.2 Vapor Pressure
- 11.3 Mixtures of Volatile Substances
- 11.4 Colligative Properties of Solutions
- 11.5 Osmosis and Osmotic Pressure
- 11.6 Using Colligative Properties to Determine Molar Mass

Fractional Distillation

- Method of separating a mixture of compounds based on their different boiling points
- Vapor phase enriched in more volatile component

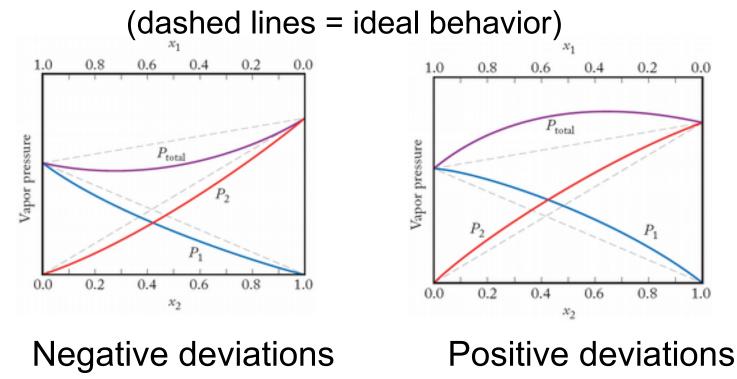
Solutions of Volatile Components

• Raoult's Law:


 Total vapor pressure of an ideal solution depends on how much the partial pressure of each volatile component contributes to total vapor pressure of solution

•
$$P_{\text{total}} = \chi_1 P_1^{\circ} + \chi_2 P_2^{\circ} + \chi_3 P_3^{\circ} + \dots$$

where χ_i = mole fraction of component *i*, and


 P_i° = equilibrium vapor pressure of pure volatile component at a given temperature

Fractional Distillation

Real vs. Ideal Solutions

 Deviations from Raoult's Law: Due to differences in solute–solvent and solvent–solvent interactions

Practice: Vapor Pressure of Solution

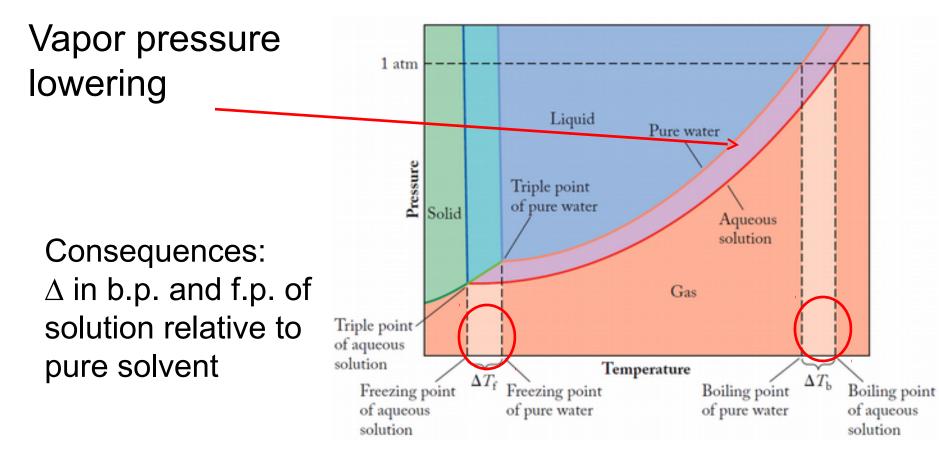
A solution contains 100.0 g of water (MW = 18.0 g/mol) and 25.00 g of ethanol (MW = 44.0 g/mol). What are the mole fractions of water and ethanol, and the vapor pressure of the solution at 25°C? $(P^{\circ}_{water} = 23.8 \text{ torr}; P^{\circ}_{ethanol} = 58.7 \text{ torr})$

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

Chapter Outline

- 11.1 Energy Changes when Substances Dissolve
- 11.2 Vapor Pressure
- 11.3 Mixtures of Volatile Substances
- 11.4 Colligative Properties of Solutions
- 11.5 Osmosis and Osmotic Pressure
- 11.6 Using Colligative Properties to Determine Molar Mass

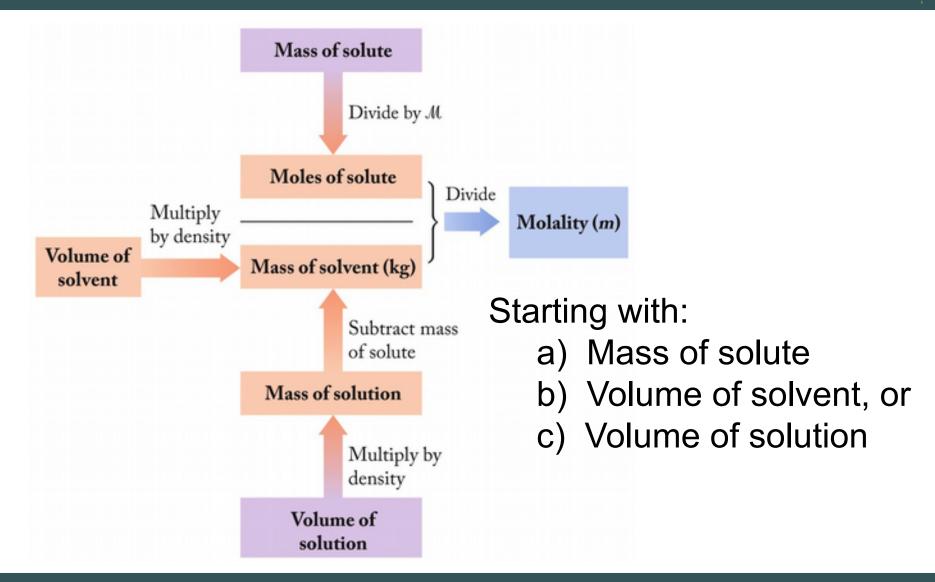
Colligative Properties of Solutions


- Colligative Properties:
 - Set of properties of a solution relative to the pure solvent
 - Due to solute–solvent interactions
 - Depend on concentration of solute particles, not the identity of particles
 - Include lowering of vapor pressure, boiling point elevation, freezing point depression, osmosis and osmotic pressure

Vapor Pressure of Solutions

- Raoult's Law:
 - Vapor pressure of solution is equal to the vapor pressure of the pure solvent multiplied by the mole fraction of solvent in the solution
 - $P_{\text{solution}} = \chi_{\text{solvent}} P^{\circ}_{\text{solvent}}$
- Vapor pressure lowering:
 - A colligative property of solutions (Section 11.5)
- Ideal Solution:
 - One that obeys Raoult's law

Colligative Properties:



 Changes in boiling point/freezing point of solutions depends on molality:

 $m = \frac{n_{\text{solute}}}{\text{kg of solvent}}$

- Preferred concentration unit for properties involving temperature changes because it is independent of temperature
- For typical solutions: molality > molarity

Calculating Molality

© 2014 W. W. Norton Co., Inc.

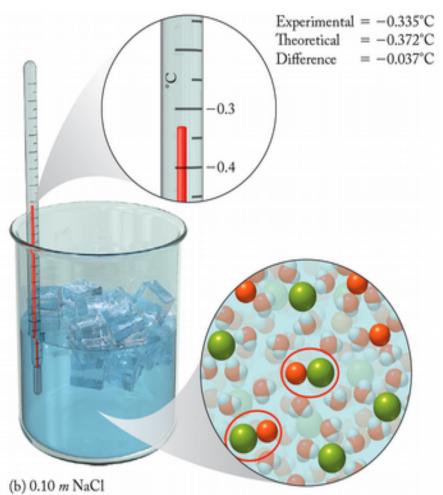
Calculate the molality of a solution containing 0.875 mol of glucose $(C_6H_{12}O_6)$ in 1.5 kg of water.

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

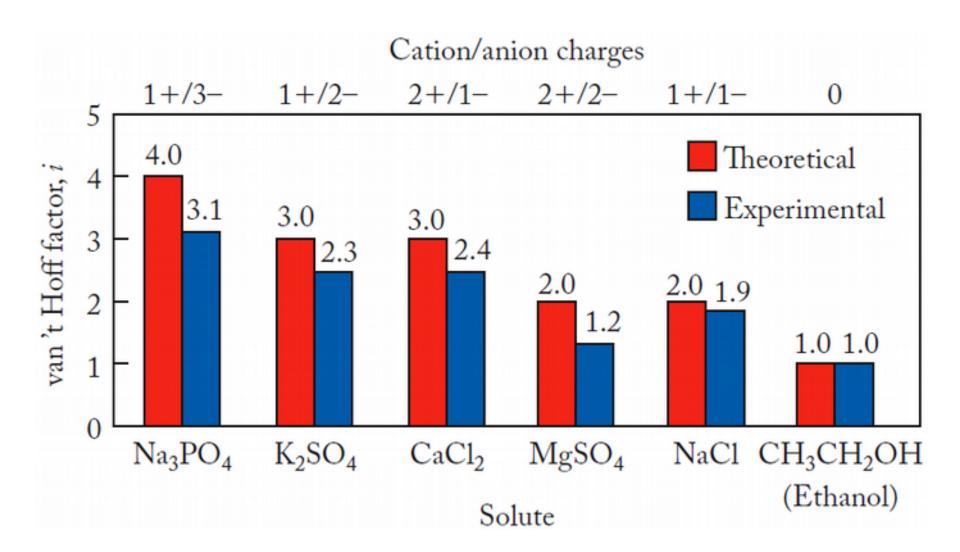
Seawater contains 0.558 *M* Cl⁻ at the surface at 25°C. If the density of seawater is 1.022 g/mL, what is the molality of Cl⁻ in seawater?

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

Boiling Point Elevation and Freezing Point Depression


- Boiling Point Elevation (ΔT_{b}):
 - $\Delta T_{\rm b} = K_{\rm b} \cdot m$
 - K_b = boiling point elevation constant of solvent; m = molality
- Freezing Point Depression (ΔT_{f}):
 - $\Delta T_{\rm f} = K_{\rm f} m$
 - *K*_f = freezing point depression constant;
 m = molality

Cinnamon owes its flavor and odor to cinnamaldehyde (C_9H_8O). Determine the boiling point elevation of a solution of 100 mg of cinnamaldehyde dissolved in 1.00 g of carbon tetrachloride ($K_b = 2.34^{\circ}C/m$).


- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

The van't Hoff Factor

- Solutions of Electrolytes:
 - Need to correct for # of particles formed when ionic substance dissolves
- van't Hoff Factor (i):
 - # ions in formula unit.
 - e.g., NaCl, *i* = 2
- $\Delta T_{\rm b} = i K_{\rm b} m \Delta T_{\rm f} = i K_{\rm f} m$
- (Deviations → ion pair formation.)

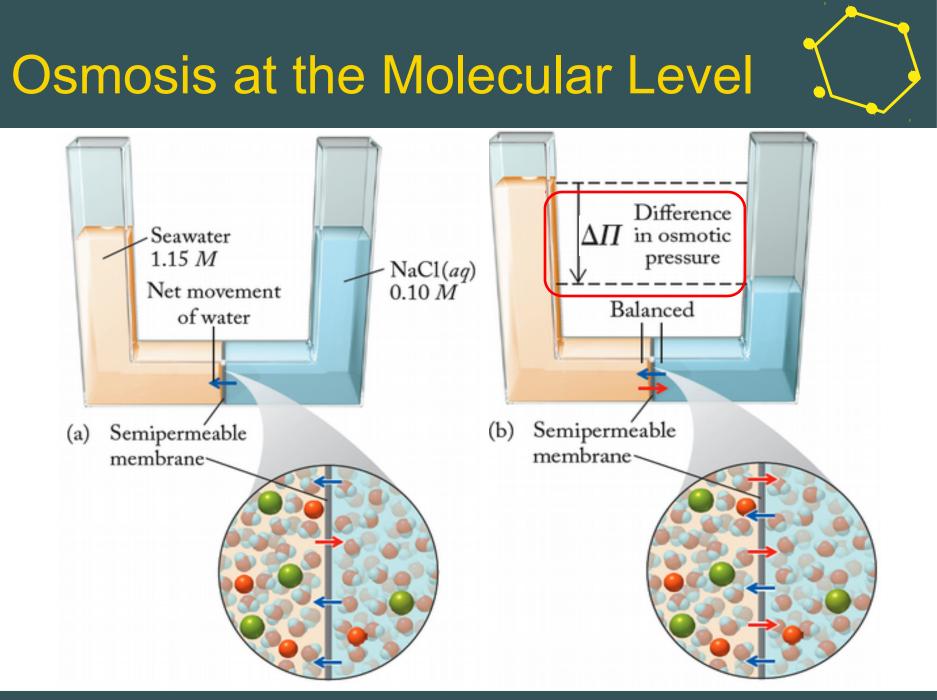
Values of van't Hoff Factors

Practice: Freezing Point Depression

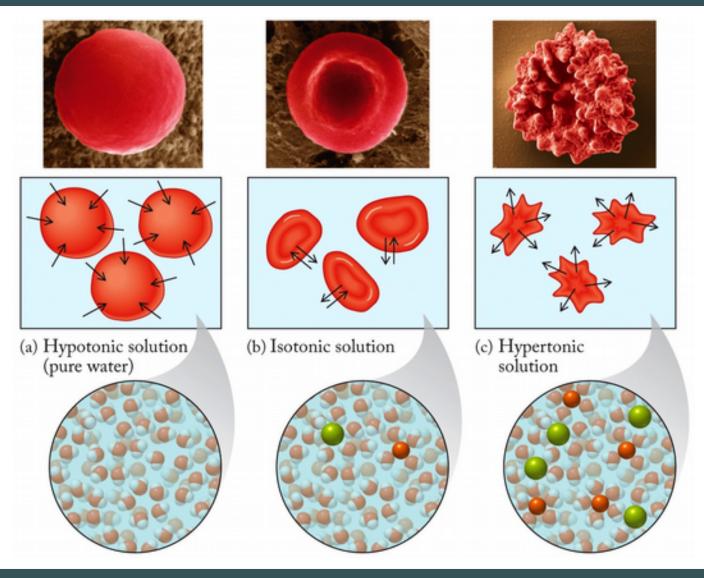
CaCl₂ is widely used to melt frozen precipitation on sidewalks after a winter storm. Could CaCl₂ melt ice at -20°C? Assume that the solubility of CaCl₂ at this temperature is 70.0 g/100.0 g of H₂O and that the van't Hoff factor for a saturated solution of CaCl₂ is 2.5 (K_f for water is 1.86 °C/m).

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

Chapter Outline

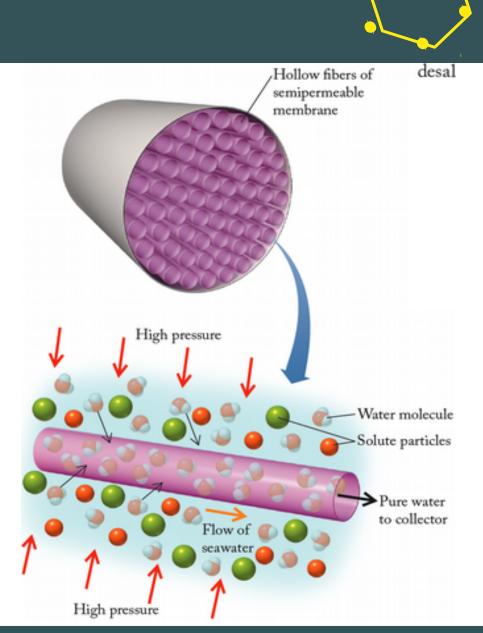

- 11.1 Energy Changes when Substances Dissolve
- 11.2 Vapor Pressure
- 11.3 Mixtures of Volatile Substances
- 11.4 Colligative Properties of Solutions
- 11.5 Osmosis and Osmotic Pressure
- 11.6 Using Colligative Properties to Determine Molar Mass

Osmosis



• Osmosis:

- Flow of fluid through a semipermeable membrane to balance the concentration of solutes in solutions on the two sides of the membrane
- Osmotic Pressure (Π) :
 - Pressure applied across a membrane to stop the flow of solvent through membrane
 - $\Pi = i \text{ MRT}$ (*M* = molarity of solution)



Osmosis: Medical Application

Reverse Osmosis

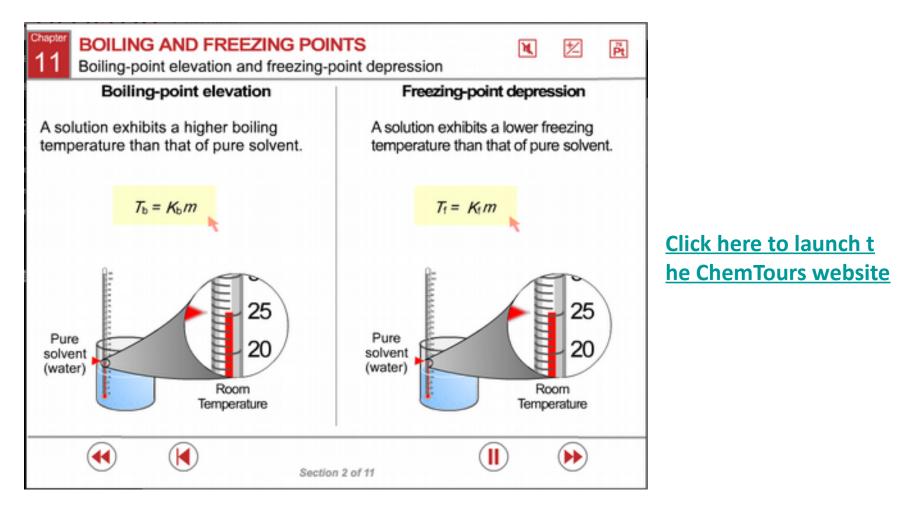
- Process in which solvent is forced through a semipermeable membrane, leaving a more concentrated solution behind
- Application: Desalination / water purification

Chapter Outline

- 11.1 Energy Changes when Substances Dissolve
- 11.2 Vapor Pressure
- 11.3 Mixtures of Volatile Substances
- 11.4 Colligative Properties of Solutions
- 11.5 Osmosis and Osmotic Pressure
- 11.6 Using Colligative Properties to Determine Molar Mass

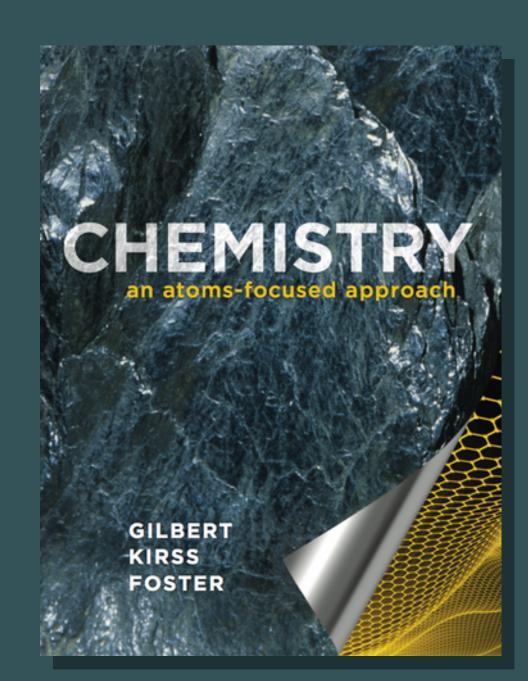
Molar Mass from Colligative Properties

- Rearrange colligative property relationships:
 - $\Delta T_{f}, \Delta T_{b}$: $\Pi = M RT = \frac{\begin{pmatrix} g \\ M \end{pmatrix}}{V} RT \implies M = \left(\frac{g \times RT}{V\Pi}\right)$ • Osmotic Pressure: $\Pi = M RT = \frac{\begin{pmatrix} g \\ M \end{pmatrix}}{V} RT \implies M = \left(\frac{g \times RT}{V\Pi}\right)$
 - Typically used only for nonelectrolyte solutes (Osmotic pressure most common application)


Practice: Molar Mass from Colligative Properties

The freezing point of a solution prepared by dissolving 1.50 × 10² mg of caffeine in 10.0 g of camphor is 3.07°C lower than that of pure camphor (K_f = 39.7°C/m). What is the molar mass of caffeine?

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:


ChemTours: Chapter 11

This concludes the Lecture PowerPoint presentation for Chapter 11

CHEMISTRY an atoms-focused approach

> GILBERT KIRSS FOSTER

© 2014 W. W. Norton Co., Inc.