
CHEMISTRY

an atoms-focused approach

Gilbert Kirss Foster

Chapter 8

Aqueous Solutions
Chemistry of the Hydrosphere

Chapter Outline

- 8.1 Solutions and Their Concentrations
- 8.2 Dilutions
- 8.3 Electrolytes and Non-Electrolytes
- 8.4 Acids, Bases, and Neutralization Reactions
- 8.5 Precipitation Reactions
- 8.6 Oxidation-Reduction Reactions
- 8.7 Titrations
- 8.8 Ion Exchange

The Blue Planet: Seawater

- Earth "the water planet"
 - Covered ~70% by water
 - Depressions in Earth's crust filled with 1.5×10^{21} L of H₂O(ℓ)
- Properties of water responsible for life on Earth, and many geographical features
- All natural waters have ionic and molecular compounds dissolved in them

Solutions

- Solutions:
 - Homogeneous mixtures of two or more substances
 - Solvent: Component of a solution that is present in the greatest amount
 - **Solute:** Any component in a solution other than the solvent (i.e., the other ingredients in the mixture)
- Aqueous solutions → water solvent

Solution Concentration

 Define the amount of solute in a solution:

- Most common concentration units based on:
 - Mass of solute
 - Moles of solute

Concentration Units

Parts per million (ppm):

ppb =
$$\left(\frac{\text{grams of solute}}{10^9 \text{grams of solution}}\right) = \left(\frac{1 \mu \text{g of solute}}{1 \text{kg of solution}}\right)$$

Parts per billion (ppb):

ppb =
$$\left(\frac{\text{grams of solute}}{10^9 \text{grams of solution}}\right) = \left(\frac{1 \mu \text{g of solute}}{1 \text{kg of solution}}\right)$$

 Useful for very small amounts of solute

Concentration Units

Molarity (M)

Mass of solute = (volume \times molarity) $\times \mathcal{M}$

$$g = \left(L \times \frac{\text{mol}}{L}\right) \times \frac{g}{\text{mol}}$$

As a conversion factor → g of solute

Mass of solute = $(volume \times molarity) \times \mathcal{M}$

$$g = \left(L \times \frac{mol}{L}\right) \times \frac{g}{mol}$$

Small concentrations: mM (10⁻³ M), μM (10⁻⁶ M)

TABLE 8.1 Average Concentrations of 11 Major Constituents of Seawater and Human Serum

Constituent	SEAWATER		HUMAN SERUM
	mmol/kg	m <i>M</i>	m <i>M</i>
Na ⁺	468.96	480.57	135–145
K ⁺	10.21	10.46	3.5-5.0
$\mathrm{Mg^{2+}}$	52.83	54.14	0.08-0.12
Ca ²⁺	10.28	10.53	0.2-0.3
Sr ²⁺	0.0906	0.0928	$< 3 \times 10^{-4}$
CI ⁻	545.88	559.40	98-108
SO ₄ ²⁻	28.23	28.93	0.3
HCO ₃ -	2.06	2.11	22-30
Br ⁻	0.844	0.865	0.04-0.06
B(OH) ₃	0.416	0.426	$< 8 \times 10^{-4}$
F-	0.068	0.070	5–6

Practice: Calculating Molarity

What is the molarity of an aqueous solution prepared by adding 36.5 g of barium chloride to enough water to make 750.0 mL of solution?

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

Practice: Mass of Solute

How many grams of aluminum nitrate are required to make 500.0 mL of a 0.0525 M aqueous solution?

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

Practice: Molarity from Density

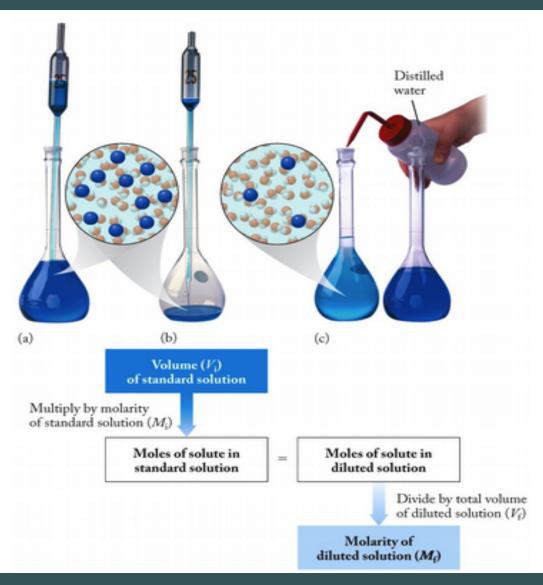
If the density of ocean water at a depth of 10,000 m is 1.071 g/mL, and if 25.0 g of water at that depth contains 190 mg of KCl, what is the molarity of KCl?

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

Chapter Outline

- 8.1 Solutions and Their Concentrations
- 8.2 Dilutions
- 8.3 Electrolytes and Non-Electrolytes
- 8.4 Acids, Bases, and Neutralization Reactions
- 8.5 Precipitation Reactions
- 8.6 Oxidation-Reduction Reactions
- 8.7 Titrations
- 8.8 Ion Exchange

Dilutions



- Stock solution: A concentrated solution of a substance used to prepare solutions of lower concentration
- Standard solution: A solution whose concentration is fairly precisely known
- Dilution: Process of lowering the concentration of a solution by adding more solvent

 $(\# \text{ moles solute})_{\text{stock}} = (\# \text{ moles solute})_{\text{dilute}}$ $V_{\text{initial}} \times M_{\text{initial}} = V_{\text{dilute}} \times M_{\text{dilute}}$

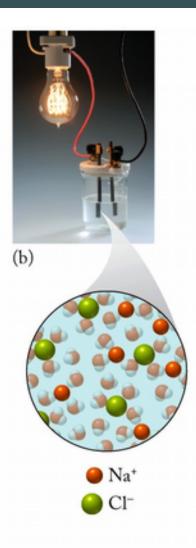
Dilution

© 2014 W. W. Norton Co., Inc.

Practice: Diluting Stock Solutions

Hydrochloric acid is obtained in 12.0 M stock solution. What volume of stock solution is required to make 500.0 mL of a 0.145 M dilute solution?

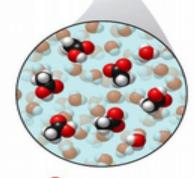
- Collect and Organize:
- Analyze:
- Solve:
- Think about It:


Chapter Outline

- 8.1 Solutions and Their Concentrations
- 8.2 Dilutions
- 8.3 Electrolytes and Non-Electrolytes
- 8.4 Acids, Bases, and Neutralization Reactions
- 8.5 Precipitation Reactions
- 8.6 Oxidation-Reduction Reactions
- 8.7 Titrations
- 8.8 Ion Exchange

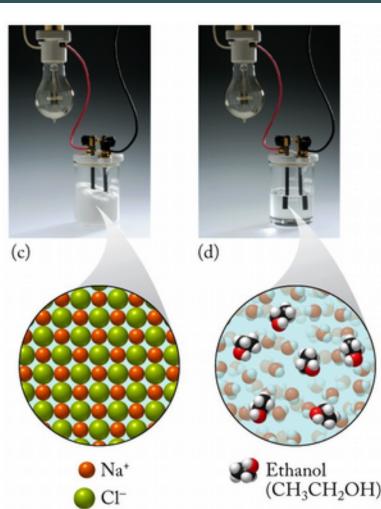
Electrolytes

- Strong Electrolytes:
 - Nearly 100% dissociated into ions
 - Conduct current efficiently
- Examples: solutions of NaCl, HNO₃, HCl
 - NaCl \rightarrow Na⁺(aq) + Cl⁻(aq)


Electrolytes

- Weak Electrolytes:
 - Only partially dissociate into ions
 - Slightly conductive
- Examples: Vinegar (aq. solution of acetic acid); tap water.

 $CH_3CO_2H \iff CH_3CO_2^-(aq) + H^+(aq)$


- Acetic acid (CH₃COOH)
- Acetate ion (CH₃COO⁻)
 - Mydronium ion (H₃O*)

Nonelectrolytes

Substances in which no ionization occurs; no conduction of electrical current

Examples: Aqueous solutions of sugar, ethanol, ethylene glycol; solid NaCl

Chapter Outline

- 8.1 Solutions and Their Concentrations
- 8.2 Dilutions
- 8.3 Electrolytes and Non-Electrolytes
- 8.4 Acids, Bases, and Neutralization Reactions
- 8.5 Precipitation Reactions
- 8.6 Oxidation-Reduction Reactions
- 8.7 Titrations
- 8.8 Ion Exchange

Acid-Base Reactions

- Arrhenius Definitions:
 - Acids: Produce H₃O⁺ in solution
 - Bases: Produce OH⁻ in solution
 - HCl $(aq) + H_2O(\ell) \rightarrow H_3O^+(aq) + Cl^-(aq)$
- H₃O⁺ simplified by leaving out water, often written as just H⁺

Acid-Base Reactions

- Brønsted–Lowry definitions:
 - Acids: Proton (H⁺) donors
 - Bases: Proton acceptors
 - HCI (aq) + H₂O(ℓ) \rightarrow H₃O⁺(aq) + CI⁻(aq) proton donor (acid) acceptor (base)

 H⁺ ions strongly associated with water molecules → hydronium ions (H₃O⁺)

Strong and Weak Acids

- Strong Acids/Bases:
 - Dissociate completely in aqueous solution (i.e., strong electrolytes)
- Strong Acids:
 - HCI, HBr, HI, H₂SO₄, HNO₃, HCIO₄
- Examples:

$$H_2SO_4(aq) \rightarrow H^+(aq) + HSO_4^-(aq)$$

$$\mathsf{HNO}_2(aq) \rightleftharpoons \mathsf{H}^+(aq) + \mathsf{NO}_2^-(aq)$$

Strong and Weak Bases

- Strong Bases:
 - 1A, 2A hydroxides
 NaOH_(aq) → Na⁺_(aq) + OH⁻_(aq)
- Weak Bases:

$$NH_3(aq) + H_2O(\ell) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$$

Water: Acid or Base?

Water as Base:

```
• HCI(aq) + H_2O(\ell) \rightarrow H_3O^+(aq) + CI^-(aq)

Proton Proton donor (acid) acceptor (base)
```

Water as Acid:

```
• NH_3(aq) + H_2O(\ell) \rightleftharpoons NH_4^+(aq) + OH^-(aq)
Proton Proton donor (acid)
```

Amphiprotic: Acts as acid or base

Acid-Base Reactions

- Neutralization: Reaction that takes place when an acid reacts with a base, producing a solution of a salt in water
- Salt:
 - Product of a neutralization reaction
 - Made up of the cation of the base plus the anion of the acid
- Example: HCl + NaOH → NaCl + H₂O

Types of Equations

Molecular Equation:

Reactants/products written as undissociated molecules

$$HCI(aq) + NaOH(aq) \rightarrow NaCI(aq) + H_2O(\ell)$$

Overall Ionic Equation:

- Distinguishes between molecular and ionic substances
- Ionic species represented as dissolved ions.

$$H^{+}(aq) + CI^{-}(aq) + Na^{+}(aq) + OH^{-}(aq) \rightarrow Na^{+}(aq) + CI^{-}(aq) + H_{2}O(\ell)$$

Types of Equations

Net Ionic Equation:

 Equation where spectator ions (ions present in same form on both reactants and products side of chemical equation) are removed from ionic equation

$$H^{+}(aq) + 2I^{-}(aq) + 4A^{+}(aq) + OH^{-}(aq) \rightarrow Na^{+}(aq) + 2I^{-}(aq) + H_{2}O(\ell)$$

Net Ionic Equation: $H^+(aq) + OH^-(aq) \rightarrow H_2O(\ell)$

Chapter Outline

- 8.1 Solutions and Their Concentrations
- 8.2 Dilutions
- 8.3 Electrolytes and Non-Electrolytes
- 8.4 Acids, Bases, and Neutralization Reactions
- 8.5 Precipitation Reactions
- 8.6 Oxidation-Reduction Reactions
- 8.7 Titrations
- 8.8 Ion Exchange

Precipitation Reactions

Precipitate: Solid product formed from a reaction in solution

$$AgNO_3(aq) + NaCl(aq) \rightarrow NaNO_3(aq) + AgCl(s)$$

- Can predict formation of precipitates based on solubility "rules"
 - Precipitation reactions can be written using net ionic equations

Solubility Rules

- Soluble Cations:
 - Group I ions (alkali metals) and NH₄⁺
- Soluble Anions:
 - NO₃⁻ and CH₃COO⁻ (acetate)
 - Halides (Group 17): Except Ag⁺, Cu⁺, Pb²⁺, Hg₂²⁺
 - Sulfates (SO₄²⁻): Except Pb²⁺, Hg₂²⁺, Ca²⁺, Ba²⁺,
 Sr²⁺
- Combining anions/cations not listed above results in formation of an insoluble compound.

Insoluble Compounds

- All hydroxides (OH-) except:
 - Group IA (e.g., NaOH) and IIA (e.g., Ca(OH)₂, Sr(OH)₂, and Ba(OH)₂)
- All sulfides (S²-) except:
 - Group IA and NH₄+; and CaS, SrS, BaS
- All carbonates (CO₃²-) except IA, NH₄⁺
- All phosphates (PO₄³⁻) except IA, NH₄⁺

Solubility Rules

TABLE 8.3 Solubility Rules for Ionic Compounds

All compounds containing the following ions are soluble in water:

- Cations: group 1 ions (alkali metals) and NH₄⁺
- Anions: NO₃⁻ and CH₃COO⁻ (acetate)

Compounds containing the following anions are soluble except as noted:

- Group 17 ions (halides), except the halides of Ag⁺, Cu⁺, Hg₂²⁺, and Pb²⁺
- · SO₄²⁻, except the sulfates of Ba²⁺, Ca²⁺, Hg₂²⁺, Pb²⁺, and Sr²⁺

Compounds that are only slightly soluble include these:

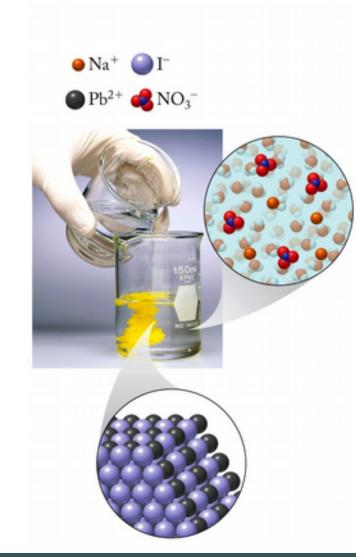
- All hydroxides except those of group 1 cations^a
- All sulfides except those of group 1 cations and NH₄^{+a}
- All carbonates except those of group 1 cations and NH₄⁺
- All phosphates except those of group 1 cations and NH₄⁺

"The solubilities of the group 2 hydroxides and sulfides increase with increasing atomic number. MgS decomposes in water, forming H_2S and $Mg(OH)_2$.

Precipitation

Combining nonsoluble cation with nonsoluble anion → ppt!

Example: $PbNO_{3}(aq) + NaI_{(aq)}$


Cations: (Pb2+) Na⁷

Anions: NO3- (I-)

Soluble

Not soluble

Precipitate: $Pbl_2(s)$

Net Ionic Equation

- Soluble ionic compounds
 - Strong electrolytes!

$$Pb(NO_3)_2(aq) + 2NaI(aq) \rightarrow 2NaNO_3(aq) + PbI_2(s)$$

Overall Ionic Equation:

$$Pb^{2+}(aq) + 2NO_3^{-}(aq) + 2Na^{+}(aq) + 2I^{-}(aq)$$

 $\rightarrow PbI_2(s) + 2Na^{+}(aq) + 2NO_3^{-}(aq)$

- Net Ionic Equation:
 - $Pb^{2+}(aq) + 2l^{-}(aq) \rightarrow Pbl_2(s)$

Practice: Will a Precipitate Form?

Does a precipitate form when sodium chloride is mixed with silver nitrate? If so, write the net ionic equation for the formation of the precipitate?

```
NaCl \rightarrow Na<sup>+</sup> + Cl<sup>-</sup>
AgNO<sub>3</sub> \rightarrow Ag<sup>+</sup> + NO<sub>3</sub><sup>-</sup>
```

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

Practice: Calculating Mass of Precipitate

What mass of barium sulfate is produced when 100.0 mL of a 0.100 *M* solution of barium chloride is mixed with 100.0 mL of a 0.100 *M* solution of iron (III) sulfate?

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

Types of Solutions

- Saturated solution: A solution that contains the maximum concentration of a solute possible at a given temperature
- Supersaturated solution: Contains more than the maximum quantity of solute predicted to be soluble in a given volume of solution at a given temperature

Supersaturated Solution

(a)

Sodium acetate precipitates from a supersaturated solution.

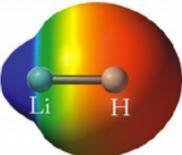
Chapter Outline

- 8.1 Solutions and Their Concentrations
- 8.2 Dilutions
- 8.3 Electrolytes and Non-Electrolytes
- 8.4 Acids, Bases, and Neutralization Reactions
- 8.5 Precipitation Reactions
- 8.6 Oxidation-Reduction Reactions
- 8.7 Titrations
- 8.8 Ion Exchange

Oxidation-Reduction Reactions

- Oxidation: Reaction that increases oxygen content of a substance (loss of electrons)
 - e.g., $4\text{Fe}(s) + 3\text{O}_2(g) \rightarrow 2\text{Fe}_2\text{O}_3(s)$
- Reduction: Reaction involving loss of O₂ (gain of electrons)

$$Fe_2O_3(s) + 3CO(g) \rightarrow 2Fe(s) + 3CO_2(g)$$


Redox reactions: Transfer of electrons

Oxidation Numbers (O.N.)

TABLE 8.4 Oxidation Number (O.N.) Assignment Rules

- 1. O.N. = 0 for atoms in pure elements.
- 2. O.N. = the charge of monatomic ions.
- 3. O.N. of fluorine = -1 in all of its compounds.
- 4. O.N. of oxygen = −2 in nearly all its compounds. Exceptions occur when O is bonded to fluorine (for example, OF₂), where its O.N. = +2, or when O is bonded to another O atom in a peroxide (for example, H₂O₂, where its O.N. = −1), or in a superoxide (for example, KO₂, where its O.N. = −½).
- 5. O.N. of hydrogen = +1 in *nearly* all its compounds. The exception is hydrogen in metal hydrides (for example, LiH), where H is the more electronegative element and its O.N. = −1.

- 6. O.N. values of the atoms in a neutral molecule sum to zero.
- 7. O.N. values of the atoms in a polyatomic ion sum to the charge on the ion.

Practice: Assigning Oxidation Numbers

Assign oxidation numbers to each element in the following compounds. (The first two are provided as examples.)

SO₂ Oxygen is -2 and Sulfur is +4. CrO_4^{2-} Oxygen is -2 and Chromium is +6.

 NH_3

CIO₃-

SF₆

 Cl_2

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

Redox Reactions: Electron Transfer

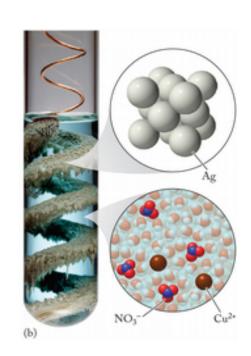
 Change in oxidation states results from gain or loss of electrons:

•
$$Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$$

• $Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$

- Zn: O.N. = 0 to +2; loss of 2 electrons; oxidation; reducing agent
- Cu: O.N. = +2 to 0; gain of 2 electrons; reduction, oxidizing agent

Balancing Redox Reactions


 Copper wire immersed in silver nitrate solution:

$$Cu(s) + 2Ag^{+}(aq) \rightarrow Cu^{2+}(aq) + 2Ag(s)$$

Can divide overall redox reaction into half-reactions:

Ox.:
$$Cu(s) \rightarrow Cu^{2+}(aq) + 2e^{-}$$

Red.:
$$Ag^+(aq) + e^- \rightarrow Ag(s)$$

Half-Reaction Method

- 1. Write separate reduction, oxidation ½-reactions.
- 2. Balance number of particles in each $\frac{1}{2}$ reaction.
- 3. Balance charge by adding electrons to the appropriate side.
- 4. Multiply ½-reactions by appropriate whole number to balance electrons.
- 5. Add ½-reactions to generate redox equation.

Practice: Balancing Redox Reactions

A nail made of Fe(s) that is placed in a solution of a soluble Pd²⁺ salt gradually disappears as the iron enters the solution as Fe³⁺. Balance the redox reaction.

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

Redox in Nature

- Soil color influenced by mineral content
 - Iron(III): Red/orange minerals (yellow/orange in solution)
 - Iron(II): Blue/gray minerals (pale green in solution)
- Analysis of iron in minerals → redox rxn.
 - Fe²⁺(aq) + MnO₄-(aq) \rightarrow Fe³⁺(aq) + Mn²⁺(aq) (colorless) (deep purple) (yellow-orange) (pink)

Redox in Nature

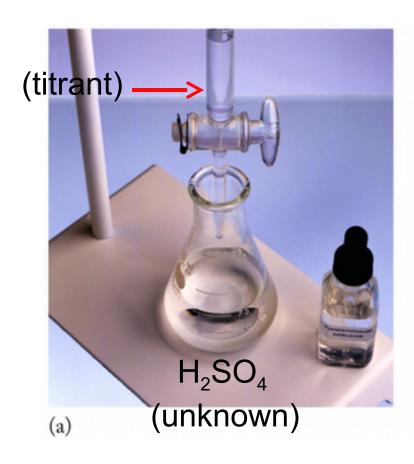
- Balancing by ½-reaction method:
- Oxidation: $Fe^{2+}(aq) \rightarrow Fe^{3+}(aq) + 1e^{-1}$
- Reduction: $MnO_4^-(aq) \rightarrow Mn^{2+}(aq)$
 - Balance particles by adding H₂O, H⁺:
 - $MnO_4^-(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O(\ell)$
 - Balance e⁻: multiply Fe ½-reaction × 5, add:

$$8H^+ + MnO_4^- + 5Fe^{2+} \rightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O$$

Chapter Outline

- 8.1 Solutions and Their Concentrations
- 8.2 Dilutions
- 8.3 Electrolytes and Non-Electrolytes
- 8.4 Acids, Bases, and Neutralization Reactions
- 8.5 Precipitation Reactions
- 8.6 Oxidation-Reduction Reactions
- 8.7 Titrations
- 8.8 Ion Exchange

Key Titration Terms



- Titration: Analytical method to determine the concentration of a solute in a sample by reacting it with a standard solution
- Standard Solution: A solution of known concentration (also called the titrant)
- Equivalence Point: When moles of titrant is stoichiometrically equivalent to moles of the substance being analyzed
- End Point: When the indicator changes color

Titration Example

$$H_2SO_4 + 2 NaOH \rightarrow Na_2SO_4 + 2 H_2O$$

Stoichiometry Calculations

$$H_2SO_4 + 2 NaOH \rightarrow Na_2SO_4 + 2 H_2O$$

At the equivalence point:

moles
$$H_2SO_4 = (\text{# moles NaOH})/2$$

 $M_{acid} \cdot V_{acid} = (M_{base} \cdot V_{base})/(2)$

Rearrange to find M_{acid}:

$$M_{acid} = (M_{base} \cdot V_{base})/(2)(V_{acid})$$

Practice: Acid-Base Titration

 What is the concentration of sulfuric acid if 15.00 mL of it reacts with 18.45 mL of a 0.0973 M NaOH solution?

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

Practice: Titration #2

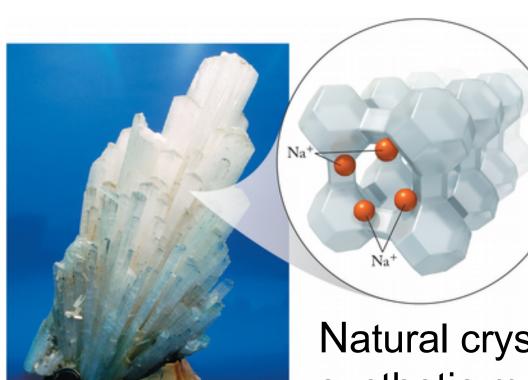
If 30.34 mL of a 0.135 M solution of hydrochloric acid (HCI) were required to neutralize 25.00 mL of a sodium hydroxide (NaOH) solution, what is the molarity of the sodium hydroxide solution?

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

Chapter Outline

- 8.1 Solutions and Their Concentrations
- 8.2 Dilutions
- 8.3 Electrolytes and Non-Electrolytes
- 8.4 Acids, Bases, and Neutralization Reactions
- 8.5 Precipitation Reactions
- 8.6 Oxidation-Reduction Reactions
- 8.7 Titrations
- 8.8 Ion Exchange

Ion Exchange

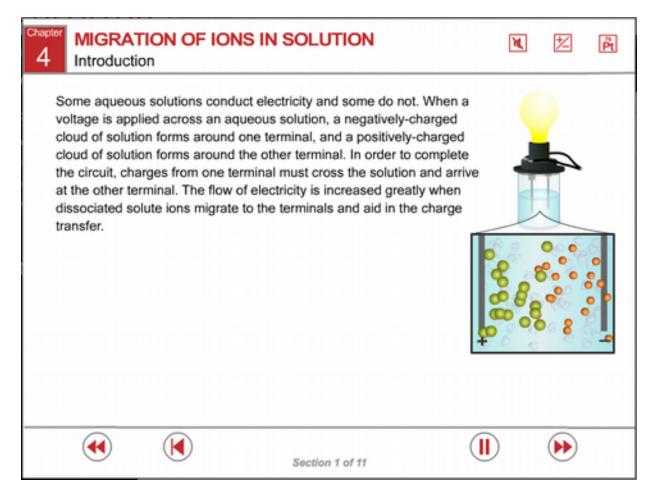


- Ion Exchange: Process by which one ion is displaced by another
 - Important in purification/softening of water
- "Soft" metal ions (Na⁺) exchanged for metals that contribute to "hard" water (Ca²⁺, Mg²⁺)
 - Uses ion exchange resin or zeolites:

$$2(R-COO^-Na^+) + Ca^{2+} \rightarrow (RCOO^-)_2 Ca^{2+} + 2Na^+$$

Exchange resin

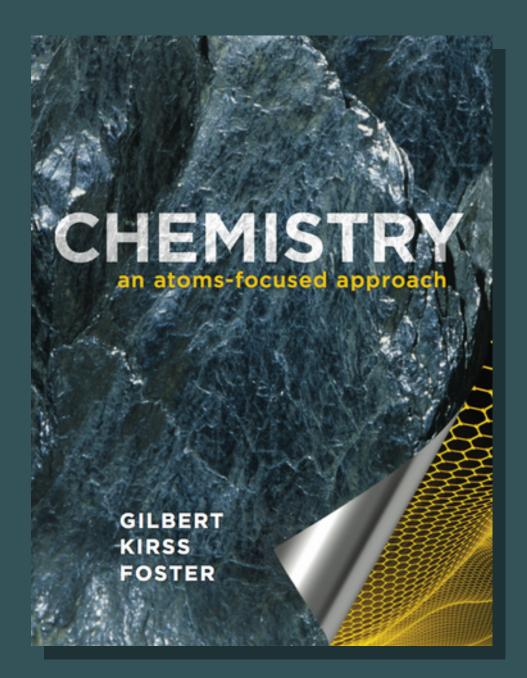
Zeolites: Natural Ion Exchangers



Zeolites

Natural crystalline minerals or synthetic materials consisting of a 3-D network of channels containing Na⁺ or other +1 ion

ChemTours: Chapter 8


Click here to launch the ChemTours website

This concludes the Lecture PowerPoint presentation for Chapter 8

CHEMISTRY

an atoms-focused approach

GILBERT KIRSS FOSTER

