SOLUBILITY RULES:

SOLUBLE:

All Nitrates, Acetates, Ammonium and Group I salts All Chlorides, Bromides, and Iodides, except Silver, Lead, and Mercury(I) All Fluorides except Group II, Lead(II), and Iron(III) All Sulfates except Calcium, Strontium, Barium, Mercury, Lead(II), and Silver **INSOLUBLE:** All Carbonates and Phosphates except Group I and Ammonium All Hydroxides except Group I, Strontium, and Barium All Sulfides except Group I, II, and Ammonium All Sulfides except Group I

INSOLUBLE means a precipitate forms when equal volumes of 0.10 M solutions or greater are mixed

Molarity = M = moles of solute/liters of solution Molality = m = moles of solute/kg of solvent For dilutions M₁ V₁ = M₂ V₂

$q = m C \Delta T$	Colligative Properties
$q = m \Delta H$	$\mathbf{P} = \mathbf{X}_1 \mathbf{P}_1 + \mathbf{X}_2 \mathbf{P}_2 + \mathbf{X}_3 \mathbf{P}_3 + \dots$
	where P is pressure and X is mole fraction
Gas Laws:	$\Delta T = i m K_{bp}$ (boiling pt elevation)
PV = nRT	$\Delta T = i m K_{fp}$ (freezing pt depression)

 $\frac{P_1 \cdot V_1}{T_1} = \frac{P_2 \cdot V_2}{T_2}$

1 atm = 760 Torr = 760 mm Hg = 1.013 bar = 14.7 psi R = 0.08206 L atm / (mol K) = 8.314 J / (mol K)

First order integrated rate law:

$$\ln[A] = -kt + \ln[A]_0$$

Second order integrated rate law:

 $pH = -log [H^+]$

 $pOH = -log [OH^-]$

 $K_w = 1.00E-14 = [H^+] [OH^-]$

Quadratic equation
$$x = \frac{-b + -\sqrt{b^2 - 4ac}}{2a}$$

 $\begin{array}{l} \Delta G = \Delta H - T \ \Delta S \\ \Delta G = \Sigma n \ \Delta G_{products} - \ \Sigma n \ \Delta G_{reactants} & (where `n' refers to the properly balanced equation coefficients) \\ \Delta H = \Sigma n \ \Delta H_{products} - \ \Sigma n \ \Delta H_{reactants} \\ \Delta S = \Sigma n \ \Delta S_{products} - \ \Sigma n \ \Delta S_{reactants} \\ \Delta G^{\circ}_{rxn} = -RT \ ln(K) & where K is the equilibrium constant \end{array}$