Scientific Notation

- In science we often need to work with very large and very small numbers
- Scientific notation makes working with and comparing these values much easier
- A scientific number consists of two parts, a real number and 10 to an integer power: e.g. 2.55 * 10^{6}
- The proper form for the real component is one non-zero digit followed by a decimal, and then the other digits.

Remember that:

$$
\begin{aligned}
& 10^{0}=1 \\
& 10^{1}=10 \\
& 10^{2}=10 * 10=100 \\
& 10^{3}=10 * 10 * 10=1000
\end{aligned}
$$

SO:
$2.15 * 10^{2}=2.15 * 100=215$
$2.15 * 10^{5}=2.15 * 100000=215000$

Also, since $X^{-1}=1 / X$:

$$
\begin{aligned}
& 10^{-1}=1 / 10=0.1 \\
& 10^{-2}=1 /\left(10^{*} 10\right)=1 / 100=0.01 \\
& 10^{-3}=1 /(10 * 10 * 10)=1 / 1000=0.001 \\
& 10^{-4}=1 /(10 * 10 * 10 * 10)=0.0001
\end{aligned}
$$

and:
$5.45 * 10^{-1}=5.45 * 0.1=0.545$
$5.45 * 10^{-4}=5.45 * 0.0001=0.000545$

When multiplying exponential values, add the exponents:
$10^{x} * 10^{y}=10^{(x+y)}$
$10^{3} * 10^{2}=10^{(3+2)}=10^{5}$

And for multiplied values with real and exponential parts:
$\left(2.5 * 10^{2}\right) *\left(3.0 * 10^{4}\right)=(2.5 * 3.0) *\left(10^{2} * 10^{4}\right)$

$$
=7.5 * 10^{6}
$$

When dividing exponents, remember that: $1 / 10^{x}=10^{-x}$
$10^{3} / 10^{4}=10^{3} * 10^{-4}=10^{-1}$
$10^{3} / 10^{-4}=10^{3} * 10^{4}=10^{7}$
$4.66 * 10^{2} /\left(2.00 * 10^{4}\right)=4.66 / 2.00 * 10^{2} / 10^{4}$ $=2.33 * 10^{-2}$

When using a calculator for numbers in this format, be sure to use parenthesis around the entire divisor so that you will obtain the correct answer.

For addition/subtraction of exponential values, the exponents must be identical before adding/subtracting the real components:

$$
\begin{aligned}
10^{3}+10^{4} & =1 * 10^{3}+10 * 10^{3} \\
& =11 * 10^{3} \\
& =1.1 * 10 * 10^{3} \\
& =1.1 * 10^{4}
\end{aligned}
$$

$$
1.11 * 10^{5}+1.11 * 10^{4}=1.11 * 10 * 10^{4}+1.11 * 10^{4}
$$

$$
=11.1 * 10^{4}+1.11 * 10^{4}
$$

$$
=12.21 * 10^{4}
$$

$$
=1.221 * 10 * 10^{4}
$$

$$
=1.221 * 10^{5}
$$

Scientific notation may be abbreviated using exponential shorthand:

For a value such as 5.43 * 10^{5},
'* 10 ' is replaced by ' E ', so:
$5.43 * 10^{5}=5.43 \mathrm{E} 5$
Scientific calculators have a button for entering values in this format (usually ' E ', ' $E E$ ', or 'Exp').

This makes data entry easier by saving on keystrokes, and also reduces the chance of common calculator errors, as shown on the next slide.

Suppose we want to divide 4.22 * 104 by 2.11 * 10-4.

This would be entered into a calculator as: $\left(4.22\right.$ * $\left.10^{\wedge} 4\right) /\left(2.11\right.$ * $\left.10^{\wedge}-4\right)=2.00$ * 10^{8}
but if you forget the parenthesis:
4.22 * $10^{\wedge} 4 / 2.11$ * $10^{\wedge}-4=2.00 * 10^{0}=2.00$ so the answer is off by 100 million.

A simpler way to input the calculation is: $4.22 \mathrm{E} 4 / 2.11 \mathrm{E}-4=2.00 \mathrm{E} 8$

