Ch. 8: Nomenclature

Naming of compounds
-Metals and non-metals combine to form ionic compounds
-Non-metals and non-metals combine to form molecular compounds

Binary Compounds - composed of only two elements, though may have more than two atoms:
$\mathrm{NaCl}, \mathrm{KF}, \mathrm{CaCl}_{2}, \mathrm{CO}, \mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{C}_{6} \mathrm{H}_{14}, \mathrm{HCl}, \ldots$

Naming lons:
-Cation (metal) - name is the same as the element, + 'ion'
-Fixed charge cations - metals that only form one cation (such as Group 1 and 2 metals):
$\mathrm{Li}^{+1} \rightarrow$ lithium ion, $\mathrm{Ca}^{+2} \rightarrow$ calcium ion

- Variable charged cations - metals that may form different cations (most transition metals). Use Roman numerals to show the charge:
$\mathrm{Fe}^{+2} \rightarrow$ iron (II) ion
$\mathrm{Fe}^{+3} \rightarrow$ iron (III) ion

TABLE 8.3 Comparison of Roman Numeral and Suffix System Names for Selected Metal Ions

Element	Ions	Preferred Name	Old System Name
Copper	Cu^{+}	copper(I) ion	cuprous ion
Iron	Cu^{2+}	copper(II) ion	cupric ion
	Fe^{2+}	iron(II) ion	ferrous ion
	Fe^{3+}	iron(III) ion	ferric ion
Tin	Sn^{2+}	tin(II) ion	stannous ion
	Sn^{4+}	tin(IV) ion	stannic ion
Lead	Pb^{2+}	lead(II) ion	plumbous ion
	Pb^{4+}	lead(IV) ion	plumbic ion
Gold	Au^{+}	gold(I) ion	aurous ion
	Au^{3+}	gold(III) ion	auric ion

-Anion (non-metal) - use the root of the element name, change the ending to 'ide', + 'ion':
$S \rightarrow S^{-2}$
sulfur \rightarrow sulfide ion
$\mathrm{N} \rightarrow \mathrm{N}^{-3}$
nitrogen \rightarrow nitride ion
$\mathrm{O} \rightarrow \mathrm{O}^{-2}$
oxygen \rightarrow oxide ion

TABLE 8.2 Names for the More Common Nonmetal Ions

Element	Stem	Name of Ion	Formula
Bromine	brom-	bromide ion	Br^{-}
Carbon	carb-	carbide ion	C^{4-}
Chlorine	chlor-	chloride ion	Cl^{-}
Fluorine	fluor-	fluoride ion	F^{-}
Hydrogen	hydr-	hydride ion	H^{-}
lodine	iod-	iodide ion	I^{-}
Nitrogen	nitr-	nitride ion	N^{3-}
Oxygen	ox-	oxide ion	O^{2-}
Phosphorus	phosph-	phosphide ion	P^{3-}
Sulfur	sulf-	sulfide ion	S^{2-}

Naming Binary Ionic Compounds:

- List the cation first, then the anion
- Do not include 'ion' in the name
- Names must be distinctive, in order to distinguish between similar compounds, such as with variablecharged metals

NaCl - sodium chloride
CaF_{2} - calcium fluoride
Fel_{2} - iron (II) iodide
FeI_{3} - iron (III) iodide

For variable charged ionic compounds:

-Basically, all metals are variable charged, except for:
Group 1, Group 2, $\mathrm{Ag}^{+1}, \mathrm{Zn}^{+2}, \mathrm{Cd}^{+2}, \mathrm{Al}^{+3}, \mathrm{Ga}^{+3}$
-For all other metals, the Stock System (Roman Numerals) must be used:
$\mathrm{Cu}_{2} \mathrm{O}$ - copper (I) oxide
CuO - copper (II) oxide

	IIA											IIIA					
Li^{+}	Be^{2+}																
Na^{+}	Mg^{2+}										IIB	Al^{3+}					
K^{+}	Ca^{2+}										Zn^{2+}	Ga^{3+}					
Rb^{+}	Sr^{2+}									Ag^{+}	Cd^{2+}						
Cs^{+}	Ba^{2+}																

TABLE 8.1 Ionic Charges Associated with lons of the More Common Variable-Charge Metals

Element

Chromium
Cobalt
Copper
Gold
Iron

Lead

Manganese
Tin

Ions Formed

$$
\begin{aligned}
& \mathrm{Cr}^{2+} \text { and } \mathrm{Cr}^{3+} \\
& \mathrm{Co}^{2+} \text { and } \mathrm{Co}^{3+} \\
& \mathrm{Cu}^{+} \text {and } \mathrm{Cu}^{2+} \\
& \mathrm{Au}^{+} \text {and } \mathrm{Au}^{3+} \\
& \mathrm{Fe}^{2+} \text { and } \mathrm{Fe}^{3+} \\
& \mathrm{Pb}^{2+} \text { and } \mathrm{Pb}^{4+} \\
& \mathrm{Mn}^{2+} \text { and } \mathrm{Mn}^{3+} \\
& \mathrm{Sn}^{2+} \text { and } \mathrm{Sn}^{4+}
\end{aligned}
$$

To determine the charge on a variable charge cation, treat the formula as an algebraic expression:

To determine the iron charge in $\mathrm{Fe}_{2} \mathrm{O}_{3}$

- let $\mathrm{Fe}=\mathrm{x}$ and $\mathrm{O}=\mathrm{y}$ (x and y are ionic charges) -the charges of the ions must add up to the overall charge, which is 0 in this case, so
$2 x+3 y=0$
-we know that $\mathrm{y}=-2$ (oxide ion)
$2 x+3(-2)=0$
$x=+3$
- so $\mathrm{Fe}_{2} \mathrm{O}_{3}$ is named iron (III) oxide

Writing formulas for binary ionic compounds:
-The formula shows a ratio of one ion to the other.
-The ionic charges must cancel out so that the overall charge is neutral
-Always list the metal first, then the non-metal

- Select subscripts to balance charges
-Reduce subscripts if needed to obtain the lowest whole number ratio between ions

Polyatomic lons

These are covalently bonded atoms with an overall charge (an ionic molecule):
NO_{3}^{-1} - nitrate ion
ClO_{3}^{-1} - chlorate ion
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-1}$ - acetate ion
OH^{-1} - hydroxide ion
SO_{4}^{-2} - sulfate ion
$\mathrm{CO}_{3}{ }^{-2}$ - carbonate ion
PO_{4}^{-3} - phosphate ion
$\mathrm{H}_{3} \mathrm{O}^{+1}$ - hydronium ion
NH_{4}^{+1} - ammonium ion $\left(\mathrm{NH}_{3}\right.$ - ammonia $)$

Oxyions

Polyatomic ions containing oxygen and another non-metal
-Most common forms end in 'ate'
-One less oxygen ends in 'ite'
-Two less oxygens, 'hypo' prefix and 'ite' suffix -One more oxygen, 'per' prefix and 'ate' suffix
ClO^{-1} - hypochlorite ion
ClO_{2}^{-1} - chlorite ion
ClO_{3}^{-1} - chlorate ion
ClO_{4}^{-1} - perchlorate ion

TABLE 8.4 Formulas and Names of Some Common Polyatomic Ions

Key Element Present	Formula	Name of Ion
Nitrogen	$\mathrm{NO}_{3}{ }^{-}$	nitrate ion
	$\mathrm{NO}_{2}{ }^{-}$	nitrite ion
	$\mathrm{NH}_{4}{ }^{+}$	ammonium ion
	$\mathrm{N}_{3}{ }^{-}$	azide ion
Sulfur	$\mathrm{SO}_{4}{ }^{2-}$	sulfate ion
	$\mathrm{HSO}_{4}{ }^{-}$	hydrogen sulfate (bisulfate ion)**
	$\mathrm{SO}_{3}{ }^{2-}$	sulfite ion
	$\mathrm{HSO}_{3}{ }^{-}$	hydrogen sulfite (bisulfite ion)**
	$\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$	thiosulfate ion
Phosphorus	$\mathrm{PO}_{4}{ }^{3-}$	phosphate ion
	$\mathrm{HPO}_{4}{ }^{2-}$	hydrogen phosphate ion
	$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	dihydrogen phosphate ion
	$\mathrm{PO}_{3}{ }^{3-}$	phosphite ion
Carbon	$\mathrm{CO}_{3}{ }^{2-}$	carbonate ion
	$\mathrm{HCO}_{3}{ }^{-}$	hydrogen carbonate (bicarbonate ion)**
	$\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$	oxalate ion
	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$	acetate ion
	CN^{-}	cyanide ion
	OCN^{-}	cyanate ion
	SCN ${ }^{-}$	thiocyanate ion
Chlorine	$\mathrm{ClO}_{4}{ }^{-}$	perchlorate ion
	$\mathrm{ClO}_{3}{ }^{-}$	chlorate ion
	$\mathrm{ClO}_{2}{ }^{-}$	chlorite ion
	ClO^{-}	hypochlorite ion
Oxygen	$\mathrm{O}_{2}{ }^{2-}$	peroxide ion
Boron	$\mathrm{BO}_{3}{ }^{3-}$	borate ion
Hydrogen	$\mathrm{H}_{3} \mathrm{O}^{+}$	hydronium ion*
	OH^{-}	hydroxide ion
Metals	$\mathrm{MnO}_{4}{ }^{-}$	permanganate ion
	$\mathrm{CrO}_{4}{ }^{2-}$	chromate ion
	$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$	dichromate ion

Naming Binary Molecular Compounds

-For the first element, use the elemental name
-For the second, change the ending to 'ide'

- To determine which element is listed first:
- Lower group first
- If both elements are in the same group, then the largest number period is first

Exceptions:

- Hydrogen goes between groups 15 and 16
- Oxygen is between F and Cl , for naming order

Element $\underbrace{\mathrm{B}}_{\text {Group }} \underbrace{\mathrm{Si} \quad \mathrm{C}}_{\text {IIIA }} \underbrace{\mathrm{Sb} \quad \mathrm{As} \mathrm{P}}_{\text {IVA }} \mathrm{N} \mathrm{H} \underbrace{\mathrm{Te} \quad \mathrm{Se}}_{\text {VA }} \mathrm{S}$ VIA $\underbrace{\mathrm{I}}_{\text {VIIA }} \mathrm{Br} \mathrm{Cl} ~ \mathrm{O} \mathrm{F}$

© 2011 Pearson Education, Inc.
-The formula name must indicate the subscripts

- use prefixes to show subscripts
- The prefix 'mono' is not used on the first element listed
-Remember that molecules have fixed numbers of atoms linked together, so DO NOT reduce coefficients to lower ratios

TABLE 8.5 Common Numerical Prefixes from 1 to 10

Prefix	Number
Mono-	1
Di-	2
Tri-	3
Tetra-	4
Penta-	5
Hexa-	6
Hepta-	7
Octa-	8
Nona-	9
Deca-	10

TABLE 8.6 Some Binary Molecular Compounds that Have Common Names

Compound Formula

Accepted Common Name

$\mathrm{H}_{2} \mathrm{O}$	water
$\mathrm{H}_{2} \mathrm{O}_{2}$	hydrogen peroxide
NH_{3}	ammonia
$\mathrm{N}_{2} \mathrm{H}_{4}$	hydrazine
CH_{4}	methane
$\mathrm{C}_{2} \mathrm{H}_{6}$	ethane
PH_{3}	phosphine
AsH_{3}	arsine

Naming Acids

-Acids are molecules that split apart in water to form $\mathrm{H}^{+1}\left(\mathrm{H}_{3} \mathrm{O}^{+1}\right)$ ions and an anion
-The acidic $\mathrm{H}(\mathrm{s})$ is usually listed first in the formula -If the name of the anion formed:

- ends in 'ide'
- 'hydro' + stem of anion + 'ic' + 'acid' $\mathrm{HCl} \rightarrow$ hydrochloric acid
- ends in 'ate'
- stem of anion + 'ic' + 'acid' $\mathrm{HClO}_{3} \rightarrow$ chloric acid
- ends in 'ite'
- stem of anion + 'ous' + 'acid' $\mathrm{HClO}_{2} \rightarrow$ chlorous acid

TABLE 8.7 The Dual Naming System for Molecular Compounds Containing Hydrogen and a Nonmetal Other Than Oxygen

Formula	Name of Pure Compound	Name of Water Solution
HF	hydrogen fluoride	hydrofluoric acid
HBr	hydrogen bromide	hydrobromic acid
HI	hydrogen iodide	hydroiodic acid
$\mathrm{H}_{2} \mathrm{~S}$	hydrogen sulfide	hydrosulfuric acid*

*For acids involving sulfur, ur from sulfur is reinserted in the acid name for pronunciation reasons.

