Ch. 8: Nomenclature

Naming of compounds

•Metals and non-metals combine to form ionic compounds

•Non-metals and non-metals combine to form molecular compounds

Binary Compounds – composed of only two elements, though may have more than two atoms:

NaCl, KF, CaCl₂, CO, CO₂, H₂O, C₆H₁₄, HCl, ...

Naming lons:
Cation (metal) – name is the same as the element, + 'ion'

 Fixed charge cations – metals that only form one cation (such as Group 1 and 2 metals): Li⁺¹ → lithium ion, Ca⁺² → calcium ion

 Variable charged cations – metals that may form different cations (most transition metals).
 Use Roman numerals to show the charge:

 $Fe^{+2} \rightarrow iron (II) ion$ $Fe^{+3} \rightarrow iron (III) ion$

TABLE 8.3 Comparison of Roman Numeral and Suffix System Names for Selected Metal Ions

Element	lons	Preferred Name	Old System Name
Copper	Cu ⁺	copper(I) ion	cuprous ion
	Cu ²⁺	copper(II) ion	cupric ion
Iron	Fe^{2+}	iron(II) ion	ferrous ion
	Fe ³⁺	iron(III) ion	ferric ion
Tin	Sn ²⁺	tin(II) ion	stannous ion
	Sn ⁴⁺	tin(IV) ion	stannic ion
Lead	Pb ²⁺	lead(II) ion	plumbous ion
	Pb ⁴⁺	lead(IV) ion	plumbic ion
Gold	Au ⁺	gold(I) ion	aurous ion
	Au ³⁺	gold(III) ion	auric ion

•Anion (non-metal) – use the root of the element name, change the ending to 'ide', + 'ion':

 $S \rightarrow S^{\text{-2}}$ sulfur \rightarrow sulfide ion

 $N \rightarrow N^{-3}$ nitrogen \rightarrow nitride ion

 $O \rightarrow O^{-2}$ oxygen \rightarrow oxide ion

TABLE 8.2 Names for the More Common Nonmetal Ions

Element	Stem	Name of Ion	Formula
Bromine	brom-	bromide ion	Br
Carbon	carb-	carbide ion	C^{4-}
Chlorine	chlor-	chloride ion	CI^-
Fluorine	fluor-	fluoride ion	F^{-}
Hydrogen	hydr-	hydride ion	H^{-}
lodine	iod-	iodide ion	Ι-
Nitrogen	nitr-	nitride ion	N ³⁻
Oxygen	OX-	oxide ion	O ²⁻
Phosphorus	phosph-	phosphide ion	P ³⁻
Sulfur	sulf-	sulfide ion	S ²⁻

Naming Binary Ionic <u>Compounds</u>:

- List the cation first, then the anion
 Do not include 'ion' in the name
 Names must be distinctive, in order to distinguish between similar compounds, such as with variablecharged metals
- NaCl sodium chloride CaF₂ – calcium fluoride Fel₂ – iron (II) iodide Fel₃ – iron (III) iodide

For variable charged ionic compounds:

 Basically, all metals are variable charged, except for:

Group 1, Group 2, Ag⁺¹, Zn⁺², Cd⁺², Al⁺³, Ga⁺³

•For all other metals, the Stock System (Roman Numerals) must be used:

 $Cu_2O - copper(I)$ oxide

CuO – copper (II) oxide

IA														
Li+	IIA Be ²⁺										IIIA			
Na ⁺		IB IIB							IIB	Al ³⁺				
	Ca ²⁺										Ga ³⁺			
Rb ⁺	Sr ²⁺								Ag ⁺	Cd ²⁺				
Cs ⁺	Ba ²⁺													

© 2011 Pearson Education, Inc.

TABLE 8.1 Ionic Charges Associated with Ions of the More Common Variable-Charge Metals

Element	lons Formed
Chromium	Cr ²⁺ and Cr ³⁺
Cobalt	Co ²⁺ and Co ³⁺
Copper	Cu ⁺ and Cu ²⁺
Gold	Au ⁺ and Au ³⁺
Iron	Fe^{2+} and Fe^{3+}
Lead	Pb^{2+} and Pb^{4+}
Manganese	Mn ²⁺ and Mn ³⁺
Tin	Sn ²⁺ and Sn ⁴⁺

To determine the charge on a variable charge cation, treat the formula as an algebraic expression:

To determine the iron charge in Fe_2O_3

•let Fe = x and O = y (x and y are ionic charges) •the charges of the ions must add up to the overall charge, which is 0 in this case, so 2x + 3y = 0

```
we know that y = -2 (oxide ion)
2x + 3 (-2) = 0
x = +3
```

•so Fe_2O_3 is named iron (III) oxide

Writing formulas for binary ionic compounds:

- •The formula shows a ratio of one ion to the other.
- •The ionic charges must cancel out so that the overall charge is neutral
- •Always list the metal first, then the non-metal
- •Select subscripts to balance charges

 Reduce subscripts if needed to obtain the lowest whole number ratio between ions These are covalently bonded atoms with an overall charge (an ionic molecule):

 $NO_{3^{-1}}$ – nitrate ion CIO_{3}^{-1} – chlorate ion $C_{2}H_{3}O_{2}^{-1}$ – acetate ion OH⁻¹ – hydroxide ion SO_{4}^{-2} – sulfate ion $CO_{3^{-2}}$ – carbonate ion $PO_{A^{-3}}$ – phosphate ion $H_{2}O^{+1}$ – hydronium ion NH_4^{+1} – ammonium ion (NH_3 – ammonia)

Oxyions

Polyatomic ions containing oxygen and another non-metal

Most common forms end in 'ate'
One less oxygen ends in 'ite'
Two less oxygens, 'hypo' prefix and 'ite' suffix
One more oxygen, 'per' prefix and 'ate' suffix

 CIO_{2}^{-1} – hypochlorite ion CIO_{2}^{-1} – chlorite ion CIO_{3}^{-1} – chlorate ion CIO_{4}^{-1} – perchlorate ion

Key Element Present	Formula	Name of Ion
Nitrogen	NO ₃ ⁻	nitrate ion
	NO ₂ -	nitrite ion
	NH_4 +	ammonium ion
	N3 -	azide ion
Sulfur	SO4 ²⁻	sulfate ion
	HSO_4^-	hydrogen sulfate (bisulfate ion)**
	SO3 ²⁻	sulfite ion
	HSO ₃ ⁻	hydrogen sulfite (bisulfite ion)**
	S ₂ O ₃ ²⁻	thiosulfate ion
Phosphorus	PO4 3-	phosphate ion
	HPO42-	hydrogen phosphate ion
	$H_2PO_4^-$	dihydrogen phosphate ion
	PO3 3-	phosphite ion
Carbon	CO3 ²⁻	carbonate ion
	HCO ₃ ⁻	hydrogen carbonate (bicarbonate ion)**
	C ₂ O ₄ ²⁻	oxalate ion
	$C_2H_3O_2^{-1}$	acetate ion
	CN^{-}	cyanide ion
	OCN ⁻	cyanate ion
	SCN^{-}	thiocyanate ion
Chlorine	CIO ₄ ⁻	perchlorate ion
	CIO3 -	chlorate ion
	CIO ₂ ⁻	chlorite ion
	CIO ⁻	hypochlorite ion
Oxygen	O2 ²⁻	peroxide ion
Boron	BO3 ³⁻	borate ion
Hydrogen	H ₃ O ⁺	hydronium ion*
	OH ⁻	hydroxide ion
Metals	MnO ₄ ⁻	permanganate ion
	CrO ₄ ²⁻	chromate ion
	Cr ₂ O ₇ ²⁻	dichromate ion

TABLE 8.4 Formulas and Names of Some Common Polyatomic Ions

Naming Binary Molecular Compounds

- •For the first element, use the elemental name
- •For the second, change the ending to 'ide'
- •To determine which element is listed first:
 - Lower group first
 - If both elements are in the same group, then the largest number period is first

Exceptions:

- Hydrogen goes between groups 15 and 16
- Oxygen is between F and Cl, for naming order

© 2011 Pearson Education, Inc.

- •The formula name must indicate the subscripts
- •use prefixes to show subscripts

 The prefix 'mono' is not used on the first element listed

 Remember that molecules have fixed numbers of atoms linked together, so DO NOT reduce coefficients to lower ratios

TABLE 8.5 Common Numerical Prefixes from 1 to 10

Prefix	Number
Mono-	1
Di-	2
Tri-	3
Tetra-	4
Penta-	5
Hexa-	6
Hepta-	7
Octa-	8
Nona-	9
Deca-	10

TABLE 8.6 Some Binary Molecular Compounds that Have Common Names

Compound Formula	Accepted Common Name
H ₂ O	water
H_2O_2	hydrogen peroxide
NH ₃	ammonia
N_2H_4	hydrazine
CH ₄	methane
C_2H_6	ethane
PH ₃	phosphine
AsH ₃	arsine

Naming Acids

- •Acids are molecules that split apart in water to form H^{+1} ($H_{3}O^{+1}$) ions and an anion
- •The acidic H(s) is usually listed first in the formula •If the name of the anion formed:
 - ends in 'ide'
 - 'hydro' + stem of anion + 'ic' + 'acid' $HCI \rightarrow$ hydrochloric acid
 - ends in 'ate'
 - stem of anion + 'ic' + 'acid' HCIO₃ \rightarrow chloric acid
 - ends in 'ite'
 - stem of anion + 'ous' + 'acid' $HCIO_2 \rightarrow chlorous acid$

TABLE 8.7 The Dual Naming System for Molecular Compounds Containing Hydrogen and a Nonmetal Other Than Oxygen

Formula	Name of Pure Compound	Name of Water Solution
HF	hydrogen fluoride	hydrofluoric acid
HBr	hydrogen bromide	hydrobromic acid
HI	hydrogen iodide	hydroiodic acid
H ₂ S	hydrogen sulfide	hydrosulfuric acid*

*For acids involving sulfur, ur from sulfur is reinserted in the acid name for pronunciation reasons.

© 2011 Pearson Education, Inc.