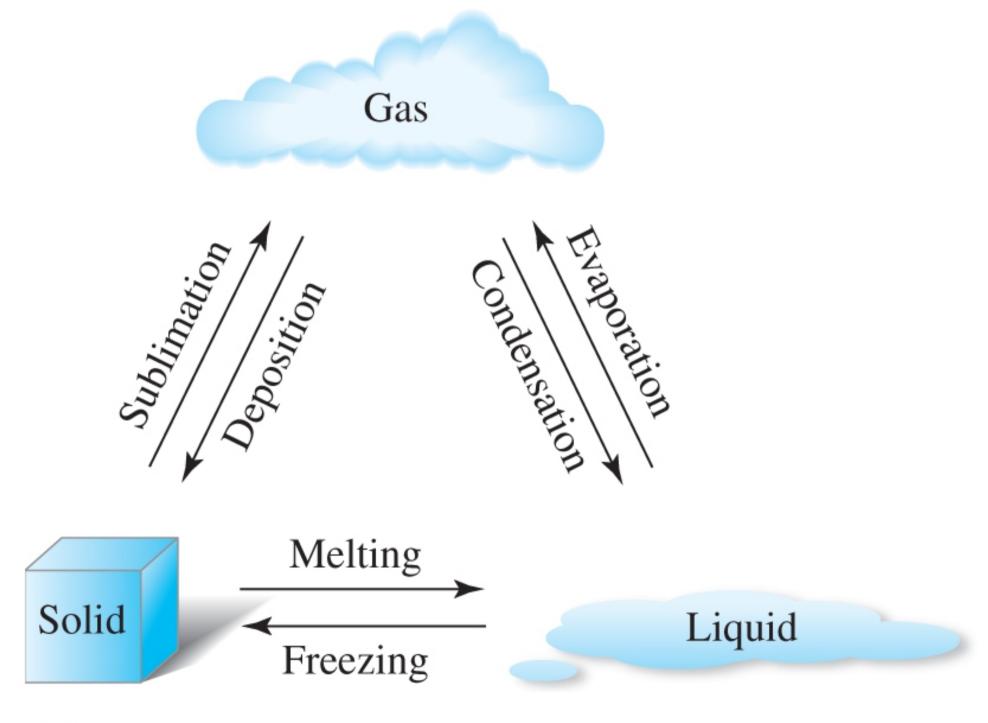

Chapter 4 – Matter

- Chemistry The study of Matter
- Matter any substance that has mass and occupies volume
- States of Matter
 - Solid definite shape and volume
 - Liquid definite volume, but no definite shape
 - Gas no definite shape or volume

Gas
Indefinite shape
Indefinite volume


- •Physical Properties Can be observed without affecting or changing the substance
 - color, odor, taste, size, state, boiling point, melting point, density, hardness
- Chemical Properties How a substance changes, or resists changing, into another substance
 - oxidation, rusting, combustion, decomposition
- Intensive properties do not depend on the amount of a substance
 - temperature, color, melting/boiling point, density
- •Extensive properties do depend on the amount of a substance
 - mass, volume, length, shape

Physical Properties	Chemical Properties		
1. Colorless	1. Reacts with bromine to form a mixture of two acids.		
2. Odorless	2. Can be decomposed by means of electricity to form hydrogen and oxygen.		
3. Boiling point = 100°C	3. Reacts vigorously with the metal sodium to produce hydrogen.		
4. Freezing point = 0°C	4. Does not react with gold even at high temperatures.		
5. Density = 1.000 g/mL at 4°C	Reacts with carbon monoxide at elevated temperatures to produce carbon dioxide and hydrogen.		

© 2011 Pearson Education, Inc.

- Physical changes No change in composition; no bonds are broken and/or formed
 - changes in size, shape, smoothness, state of matter
- Chemical changes Changes in chemical composition; bonds are broken and/or formed
 - oxidation, combustion, decomposition

© 2011 Pearson Education, Inc.

TABLE 4.2 Classification of Changes as Physical or Chemical

Change	Classification
Rusting of iron	chemical
Melting of snow	physical
Sharpening a pencil	physical
Digesting food	chemical
Taking a bite of food	physical
Burning gasoline	chemical
Slicing an onion	physical
Detonation of dynamite	chemical
Souring of milk	chemical
Breaking of glass	physical

Matter

Mixture

- 1. It is a physical combination of two or more substances.
- 2. It has a variable composition.
- 3. Properties vary as composition varies.
- 4. Components can be separated using physical means.

Pure Substance

- 1. Only one substance is present.
- 2. It has a definite and constant composition.
- 3. Properties are always the same under a given set of conditions.

Matter can be divided into Pure Substances and Mixtures:

- Pure substances Can't be broken down by physical means into simpler substances
 - Elements Simplest stable form of matter; can't be broken down chemically.
 - Compounds Can be broken down by chemical means into other compounds or elements.

Pure Substance

- 1. Only one substance present
- 2. Definite and constant composition
- 3. Properties always the same under a given set of conditions

Element

- 1. Cannot be broken down into simpler substances by chemical or physical means
- 2. The building blocks for all other types of matter
- 3. 117 known elements

Compound

- 1. A chemical combination of two or more elements
- 2. Can be broken down into constituent elements using chemical, but not physical, means
- 3. Has a definite, constant elemental composition

TABLE 4.3	The Chemical Sy	mbols for the I	Elements		
Ac	actinium	Ge	germanium	Pt	platinum
Ag	silver*	H	hydrogen	Pu	plutonium
Al	aluminum	He	helium	Ra	radium
Am	americium	Hf	hafnium	Rb	rubidium
Ar	argon	Hg	mercury*	Re	rhenium
As	arsenic	Но	holmium	Rf	rutherfordium
At	astatine	Hs	hassium	Rg	roentgenium
Au	gold*	T	iodine	Rh	rhodium
В	boron	In	indium	Rn	radon
Ba	barium	Ir	iridium	Ru	ruthenium
Be	beryllium	K	potassium*	S	sulfur
Bh	bohrium	Kr	krypton	Sb	antimony*
Bi	bismuth	La	lanthanum	Sc	scandium
Bk	berkelium	Li	lithium	Se	selenium
Br	bromine	Lr	lawrencium	Sg	seaborgium
C	carbon	Lu	lutetium	Si	silicon
Ca	calcium	Md	mendelevium	Sm	samarium
Cd	cadmium	Mg	magnesium	Sn	tin*
Ce	cerium	Mn	manganese	Sr	strontium
Cf	californium	Мо	molybdenum	Та	tantalum
CI	chlorine	Mt	meitnerium	Tb	terbium
Cm	curium	N	nitrogen	Tc	technetium
Co	cobalt	Na	sodium*	Te	tellurium
Cr	chromium	Nb	niobium	Th	thorium
Cs	cesium	Nd	neodymium	Ti	titanium
Cu	copper*	Ne	neon	TI	thallium
Db	dubnium	Ni	nickel	Tm	thulium
Ds	darmstadtium	No	nobelium	U	uranium
Dy	dysprosium	Np	neptunium	V	vanadium
Er	erbium	0	oxygen	W	tungsten*
Es	einsteinium	Os	osmium	Xe	xenon
Eu	europium	P	phosphorus	Υ	yttrium
F	fluorine	Pa	protactinium	Yb	ytterbium
Fe	iron*	Pb	lead*	Zn	zinc
Fm	fermium	Pd	palladium	Zr	zirconium
Fr	francium	Pm	promethium		
Ga	gallium	Po	polonium		
Gd	gadolinium	Pr	praseodymium		

Only 111 elements are listed in this table. Elements 112–116 and 118, discovered (synthesized) in the period 1996–2006, are yet to be named.

 $^{{\}it *These \ elements \ have \ symbols \ that \ were \ derived \ from \ non-English \ sources.}$

TABLE 4.4 Elements Whose Chemical Symbols Are Derived from a Non-English Name of the Element

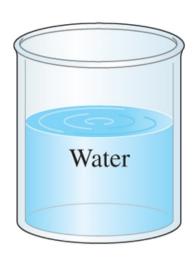
English Name of Element	Non-English Name of Element	Chemical Symbol			
	Chemical Symbols From Latin				
Antimony	stibium	Sb			
Copper	cuprum	Cu			
Gold	aurum	Au			
Iron	ferrum	Fe			
Lead	plumbum	Pb			
Mercury	hydragyrum	Hg			
Potassium	kalium	K			
Silver	argentum	Ag			
Sodium	natrium	Na			
Tin	stannum	Sn			
Chemical Symbol From German					
Tungsten	wolfram	W			

- •Mixtures Physical combinations of two or more pure substances:
 - Homogeneous mixtures Uniformly mixed on a sub-microscopic scale; one phase throughout:
 - sugar water, air, metal alloys

- Heterogeneous mixtures Physical mixtures with regions of different composition and/or phases; often different regions visible with the naked eye:
 - soup, dirt, blood, homogenized milk

Mixture

- 1. It is a physical combination of two or more substances.
- 2. It has a variable composition.
- 3. Properties vary as composition varies.
- 4. Components can be separated using physical means.


Heterogeneous Mixture

- 1. It has two or more visibly distinct phases.
- 2. Each phase has different properties.

Homogeneous Mixture

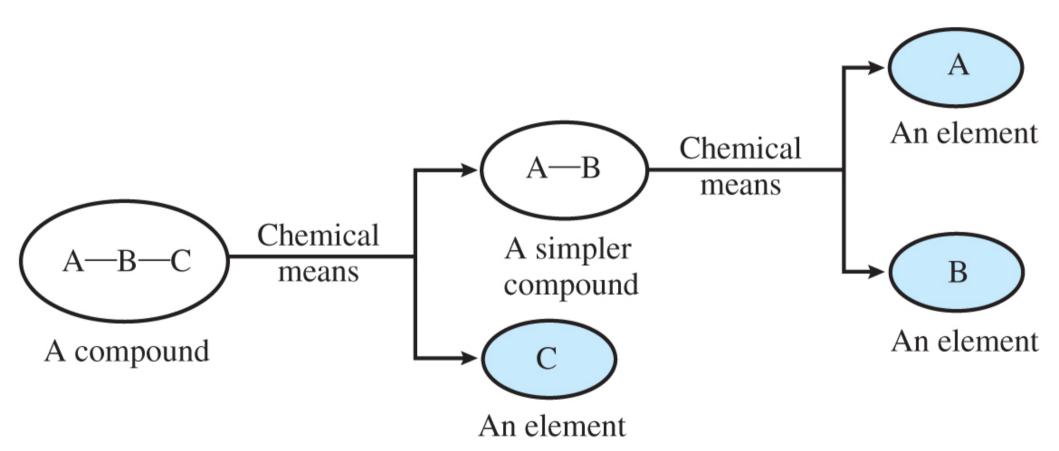
- 1. It has only one visibly distinct phase.
- 2. The phase has the same properties throughout.

Chemically homogeneous Physically homogeneous

One substance and one phase (a) Pure water

Chemically heterogeneous Physically heterogeneous

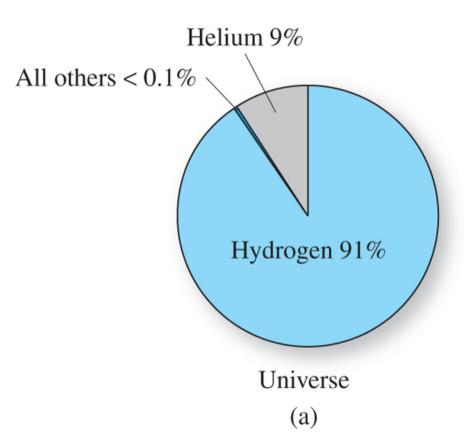
Two substances and two phases (c) Oil and water


Chemically heterogeneous Physically homogeneous

Two substances and one phase (b) Sugar water

Chemically homogeneous Physically heterogeneous

One substance and two phases (d) Ice and water

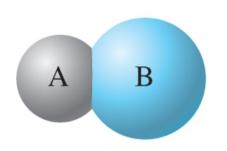


Elements

- Chemical symbols used to represent elements
 - One or two letters, first is capitalized

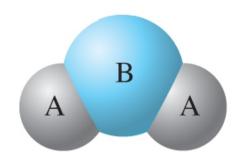
•Atom

- Smallest particle of an element that has the properties of that element
- Cannot be broken down by chemical means
- ~10⁻¹⁰ m in diameter
- ~10⁻²¹ -10⁻²³ grams mass
- There are about 5 x 10²¹ atoms in a single drop of water

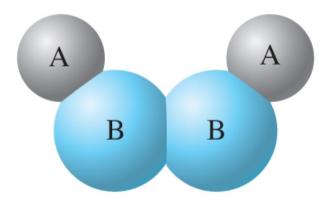


Molecules

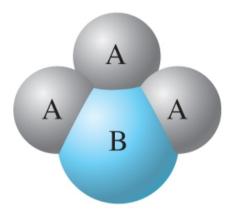
- Usually only non-metals form molecules
- Two or more atoms tied together by molecular (covalent) bonds
- Have a fixed number of atoms in a set spatial arrangement
 - H₂O, CO₂, CO, CH₄, C₆H₁₃OH


Molecules

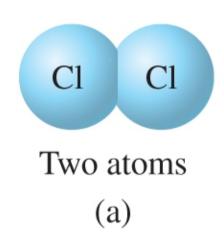
- •Binary composed of only two elements:
 - H₂O, CO₂, CO, CH₄
- •Diatomic composed of only two atoms:
 - H₂, O₂, Cl₂, CO
- •Homoatomic composed of only one element:
 - H₂, O₂, O₃, S₈
- •Heteroatomic composed of different elements:
 - H₂O, CO₂, CO, CH₄, C₆H₁₃OH

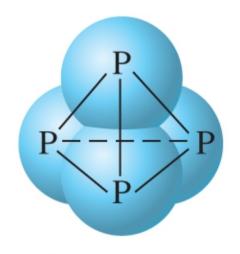

A diatomic molecule containing one atom of A and one atom of B

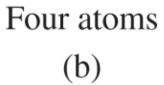
(a)

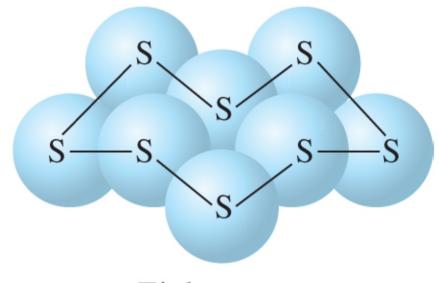

A triatomic molecule containing two atoms of A and one atom of B

(b)

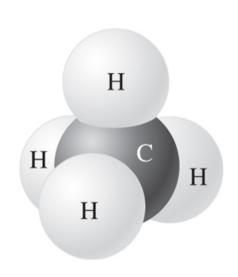

A tetratomic molecule containing two atoms of A and two atoms of B

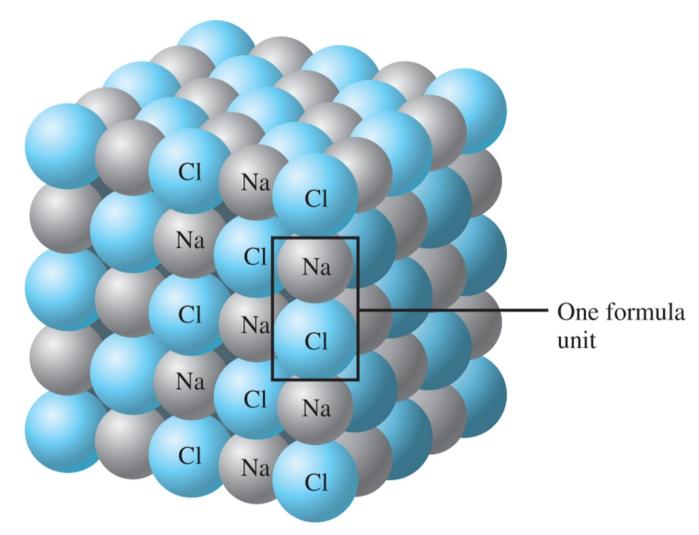

(c)




A tetratomic molecule containing three atoms of A and one atom of B

(d)

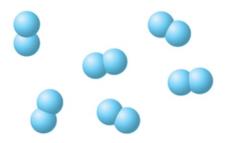



Eight atoms (c)

Ionic Compounds

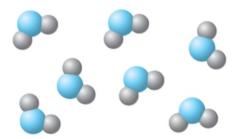
- •Formed between metals and non-metals, and also with polyatomic ions (electrically charged molecules)
- Have fixed ratios of positive to negative ions
- Overall electrically neutral
- Solid structure is a stacked array of ions

(a) A molecule of the molecular compound methane (CH₄)

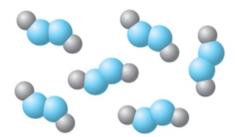


(b) A formula unit of the ionic compound sodium chloride (NaCl)

Elements

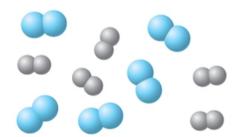


Hydrogen (H₂) molecules

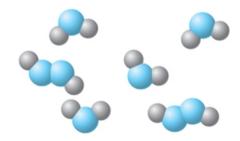


Oxygen (O2) molecules

Compounds



Water (H₂O) molecules



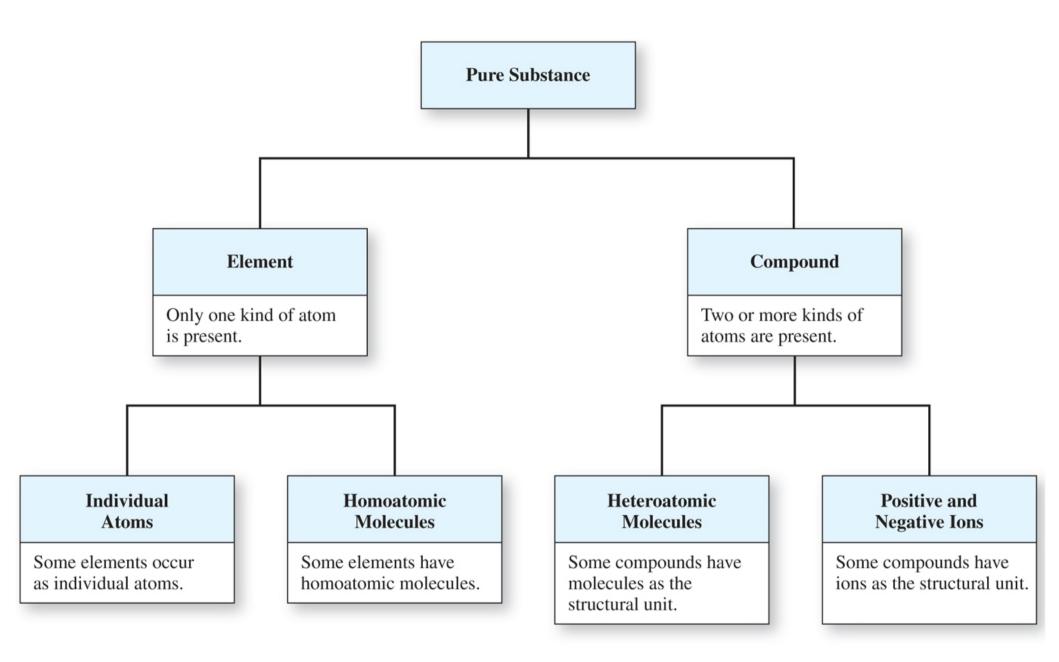
Hydrogen peroxide (H₂O₂) molecules

Mixtures

Mixture of hydrogen (H₂) and oxygen (O₂), a mixture of elements

Mixture of hydrogen peroxide (H₂O₂) and water (H₂O), a mixture of compounds

Chemical Formulas


- •Shows how many of each atom are in a compound:
 - For molecules, the formula shows the exact number in a molecule, and sometimes give structural information
 - For ionic compounds, the formula shows the lowest whole number ratios of one ion to the others in the compound
 - Parenthesis groups atoms, gives structural information
 - Subscripts show how many of each element/group are in the formula

$$H_2CO_3 = 2 H + 1 C + 3 O$$

$$C_2H_3COOH = 3 C + 4 H + 2 O$$

$$Ca(OH)_2 = 1 Ca + 2 O + 2 H$$

$$AI_{2}(SO_{4})_{3} = 2AI + 3S + 12O$$

