-Pressure = force per unit area
-If the same force is applied to a smaller area, the pressure is increased
-Atmospheric pressure - the pressure exerted by the atmosphere at sea level

- At higher altitudes, there is less atmosphere above, so the pressure is less

Atmospheric pressure

(c) 2011 Pearson Education, Inc.

© 2011 Pearson Education, Inc.

TABLE 12.2 Units of Pressure and Their Relationship to the Unit Atmosphere

Unit	Relationship to Atmosphere	Area of Use
Atmosphere	-	gas law calculations
Millimeters of mercury	$760 \mathrm{~mm} \mathrm{Hg}=1 \mathrm{~atm}$	gas law calculations
Inches of mercury	$29.92 \mathrm{in} . \mathrm{Hg}=1 \mathrm{~atm}$	weather reports
Pounds per square inch	$14.68 \mathrm{psi}=1 \mathrm{~atm}$	stored or bottled gases
Pascal	$1.013 \times 10^{5} \mathrm{~Pa}=1 \mathrm{~atm}$	calculations requiring SI units

Ideal gas - no intermolecular forces between gas particles

Most gases deviate from ideal behavior at very low temperatures or very high pressures.
-At low temperatures, particles move more slowly and are better able to interact.
-At high pressures, particles are pushed closer together and so are more likely to interact.

TABLE 12.1 Color, Odor, and Toxicity of Elements and Common Compounds That Are Gases at Ordinary Temperatures and Pressures

	Element	Properties
H_{2}	hydrogen	colorless, odorless
O_{2}	oxygen	colorless, odorless
N_{2}	nitrogen	colorless, odorless
Cl_{2}	chlorine	greenish-yellow, choking odor, toxic
F_{2}	fluorine	pale yellow, pungent-odor, toxic
He	helium	colorless, odorless
Ne	neon	colorless, odorless
Ar	argon	colorless, odorless
Kr	xenon	colorless, odorless
Xe	radon	colorless, odorless
Rn	comporless, odorless	
CO_{2}	carbon monoxide	Properties
CO^{2}	ammonia	colorless, faintly pungent odor
NH_{3}	methane	colorless, odorless, toxic
CH_{4}	sulfur dioxide	colorless, pungent odor, toxic
SO_{2}	hydrogen sulfide	colorless, odorless
$\mathrm{H}_{2} \mathrm{~S}$	hydrogen chloride	colorless, pungent choking odor, toxic
$\mathrm{HCl}^{\mathrm{NO}}$		colorless, rotten egg odor, toxic

Ideal gas relationships

-Volume vs. pressure - inversely proportional - If the pressure is doubled, the volume is halved
-Volume vs. temperature - directly proportional - If the absolute temp. is doubled, the volume is also doubled
-Pressure vs. temperature - directly proportional

- If the temperature is doubled, so is the pressure

© 2011 Pearson Education, Inc.

The volume is decreased by one-half.

A given molecule hits container walls twice as often.
(a)

TABLE 12.3 Relationship of the Individual Gas Laws to the Combined Gas Law

Law	Constancy Requirement (for a fixed mass of gas)	Mathematical Form of the Law
Combined gas law	none	$\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$
Boyle's law	$T_{1}=T_{2}$	Since T_{1} and T_{2} are equal, substitute T_{1} for T_{2} in the combined gas law and cancel. $\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{1}} \text { or } P_{1} V_{1}=P_{2} V_{2}$
Charles's law	$P_{1}=P_{2}$	Since P_{1} and P_{2} are equal, substitute P_{1} for P_{2} in the combined gas law and cancel. $\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{1} V_{2}}{T_{2}} \text { or } \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}$
Gay-Lussac's law	$V_{1}=V_{2}$	Since V_{1} and V_{2} are equal, substitute V_{1} for V_{2} in the combined gas law and cancel. $\frac{P_{1} X_{1}}{T_{1}}=\frac{P_{2} X_{1}}{T_{2}} \text { or } \frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}$

Combined Gas Law

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
$$

Temperature must be in an absolute scale (Kelvin)

Avogadro's Law - At a given temperature and pressure, the volume occupied by one mole of an ideal gas is constant, independent of the composition of the gas.

At 1 atmosphere pressure and 273 K (called standard temperature and pressure, STP), one mole of an ideal gas occupies 22.4 liters.
22.4 L of air, therefore, has a mass of about 29 grams ($80 \% \mathrm{~N}_{2}$, with a formula mass of $28 \mathrm{~g} / \mathrm{mol}$).
22.4 L of helium has a mass of only 4 g , which is much less dense than air.

Ideal Gas Law

$$
\mathrm{PV}=\mathrm{nRT}
$$

$\mathrm{P}=$ pressure
$\mathrm{V}=$ volume
$\mathrm{n}=$ moles
$\mathrm{R}=$ ideal gas constant
$\mathrm{T}=$ absolute temperature

Dalton's Law of Partial Pressure - the total pressure of a gas sample is equal to the sum of the partial pressures exerted by each gas in the sample.
$P_{\text {total }}=P_{1}+P_{2}+P_{3}+\ldots .$.

Under constant conditions (total pressure, volume, temperature) the partial pressures are directly related to the mole fractions of each gas.

TABLE 12.5 The Major Components of Clean, Dry Air

Gaseous Component	Formula	Mole Fraction	Partial Pressure $(\mathbf{m m ~ H g})$ When Total Pressure Is 760.0 mm Hg
Nitrogen	N_{2}	0.78084	593.4
Oxygen	O_{2}	0.20948	159.2
Argon	Ar	9.34×10^{-3}	7.1
Carbon dioxide	CO_{2}	3.1×10^{-4}	0.24
Neon	Ne	2×10^{-5}	0.02
Helium	He	1×10^{-5}	0.01

© 2011 Pearson Education, Inc.

TABLE 12.6 Vapor Pressure of Water at Various Temperatures

$\boldsymbol{T}\left({ }^{\circ} \mathbf{C}\right)$	Vapor Pressure $(\mathbf{m m ~ H g})$	$\boldsymbol{T}\left({ }^{\circ} \mathbf{C}\right)$	Vapor Pressure $(\mathbf{m m ~ H g})$	$\boldsymbol{T}\left({ }^{\circ} \mathbf{C}\right)$	Vapor Pressure $(\mathbf{m m ~ H g})$
15	12.8	22	19.8	29	30.0
16	13.6	23	21.1	30	31.8
17	14.5	24	22.4	31	33.7
18	15.5	25	23.8	32	35.7
19	16.5	26	25.2	33	37.7
20	17.5	27	26.7	34	39.9
21	18.7	28	28.3	35	42.2

© 2011 Pearson Education, Inc.

TABLE 12.4 Ways in Which Equation Coefficients May Be Interpreted

For the general equation	$2 \mathrm{~A}(\mathrm{~g})$	+	$3 \mathrm{~B}(\mathrm{~g})$	\longrightarrow	$\mathrm{C}(\mathrm{g})$	+	$2 \mathrm{D}(\mathrm{g})$
The ratio of molecules is	2	$:$	3	$:$	1	$:$	2
The ratio of moles is	2	$:$	3	$:$	1	$:$	2
The ratio of volumes of gas	2	$:$	3	$:$	1	$:$	2
(at the same temperature and pressure) is							

