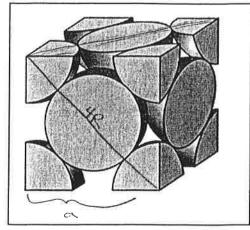

A. Uranium metal can be produced by the reaction of uranium tetrafluoride (UF4) with magnesium (Mg) in a sealed reactor heated to 700°C. The by-product is magnesium fluoride (MgF2). To ensure that all the magnesium is consumed in the reaction, the reactor is charged with excess UF4, specifically 10% more than the stoichiometric requirement of the reaction. To produce 222 kg of U, how much UF4 and Mg must be introduced into the reactor? Express your answers in kg)

$$UF_{4} + 2mg \rightarrow 2mgF_{2} + U$$
 $322,000 \text{ g} \quad U \left(\frac{1 \text{ mol } U}{238.0289 \text{ g}}\right) = 932.66 \text{ mol } UF_{4}$
 $U/UF_{4} \text{ is } 1:1 \rightarrow 932.66 \text{ mol } UF_{4}$
 $U/mg \text{ is } 1:2 \rightarrow 2 \times 932.66 = 1865.32 \text{ mol } mg \text{ 24.3 g} = 45327.3 \text{ g} \text{ mol } mg \text{ 1025.93 } \text{ mol } UF_{4} \text{ used} \text{ log } mg \text{ 1025.93 } \text{ mol } UF_{4} \text{ used} \text{ log } mg \text{ 1025.93 } \text{ mol } UF_{4} \text{ used} \text{ log } mg \text{ 1025.93 } \text{ mol } UF_{4} \text{ used} \text{ log } mg \text{ 1025.93 } \text{ mol } UF_{4} \text{ used} \text{ log } uF_{4} \text{ lo$

B. Compute the percent ionic character of the inter-atomic bonds for the following compounds: TiO₂ and CdS. The electronegativity values are given below.

		1A 1 H 2.1		% io	nic c	hara	acter	· = {	1-e	(X _A	(X _B) ²	x (1	100%	6) IIIA	IVA	VA	VIA	VIIA	0 2 He	ĺ
ží	100	10 10 11 Na	4 Be 1.5 12 Mg					,		AFII	,			5 8 20 13 Al	6 C. 25 14 Si	7 N- 3.0 15 P	* 05 X	F 40	10 Ne 18 Ar	
a		09 19 K 08 37 Rb	1.2 20 Ca 1.0 38 5r	21 Sc 13 39	1/8 7 1.5 40 2/	VB 23 V 3.6 41 Nb	24 Cr 1.6 42 Mo	VII8 25 Mn 1.5 43 To	26 Fe 1.8 44 Ru	27 Co 1.8 45	28 Ni 1.8	18 Cu 19	30 Zn 1.6	1.5 31 Ga 1.6 49	32 Ge 1.8	2.1 33 As 2.0 51	2.5 34 Se 2.4 52	3.0 35 Br 2.8 53	36 Kr	
8		0.8 55 Cs	1.0 56 Ba	1.2 57-71 La-Lu 1.1-1 2 89-102	1.4 72 HI	1.6 73 Tai	18 74 W	1.9 75 Re	76 0s	Rh 2.2 77 Ir 2.2	Pd 2.2 78 P1 2.2	A8 (1.9 79 Au 2.4	Cd 1.7 80 Hg 1.9	In 1.7 61 TI 1.8	\$0 1.8 82 Pb 1.8	\$5 1.9 83 Bi 1.9	70 2.1 84 Po 2.9	25 55 Al 2.2	86 Rn	
TiOz:	7. I	Fr 27	Ra 0.9	Ac-No 1.1-1.7	· e^	[3	,5 - _ J	- 1,5	2)	×(1	00°	7.)	= 6	3,2	\ "Y	, I	C f	ov-	Ti 0 ₂
Cas:	7. I	TC =	= (\ _	e (^[- (z	4	- 1,5	7)2	$\left(\right)$	*(1000	=	14	45	3 56	7.	IC	Ti Oz

1. Show that the cube edge length, a and the atomic radius, R are related by: $a = 2R\sqrt{2}$


$$a^{2} + a^{2} = (4R)^{2}$$

$$a^{2} = 16R^{2}$$

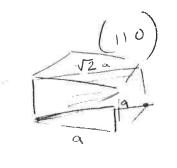
$$a^{2} = \frac{16R^{2}}{2}$$

$$a^{3} = 8R^{2}$$

$$a = 2R\sqrt{2}$$

APF =
$$\frac{\text{VOI. atom}}{\text{VOI. cell}} = \frac{4 \cdot (4/3\pi R^3)}{a^3} = \frac{4(\frac{4}{3}\pi \times (35350)^3)}{a^3} = 4(\frac{4}{3}\pi \times .3535^3) = .74$$

$$R = \frac{\alpha}{8\sqrt{2}} = .3535\alpha$$

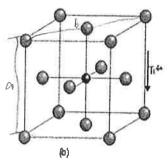

3a. Calculate the atomic radius of a lead atom, given that Pb has a FCC crystal structure, a density of 11.35 g/cm³, and an atomic weight of 207.2 g/mol.

a density of 11.35 g/cm³, and an atomic weight of 207.2

$$P = 11.35 \frac{\text{G}}{\text{Cm}^3} = \frac{\Omega A}{V_c \cdot N_A}$$
 $11.35 \frac{\text{G}}{\text{Cm}^3} = \frac{4 \text{ atoms/ceil}}{4 \text{ atoms/ceil}} \left(\frac{207.2 \text{ g/mol}}{207.2 \text{ g/mol}} \right)$
 $6.022 \times 10^{23} \frac{\text{atoms}}{\text{mol}} \times V_c$
 $V_c = 1.2 \times 10^{-22} \text{ cm}^3$

$$V_{c} = 1.2 \times 10^{-22} \text{ cm}^{3}$$

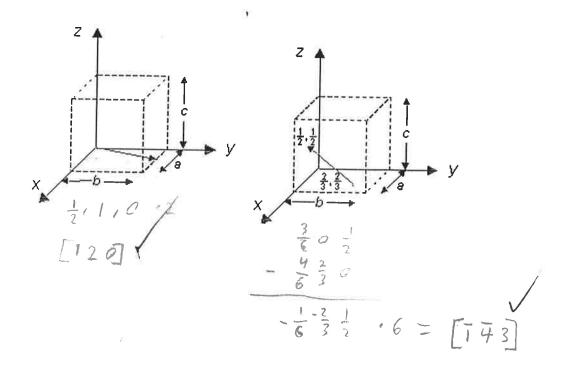
$$V_C = \alpha^3 = (2R\sqrt{2})^3$$


3b. Calculate the linear density and planar density for (110) planes in lead.

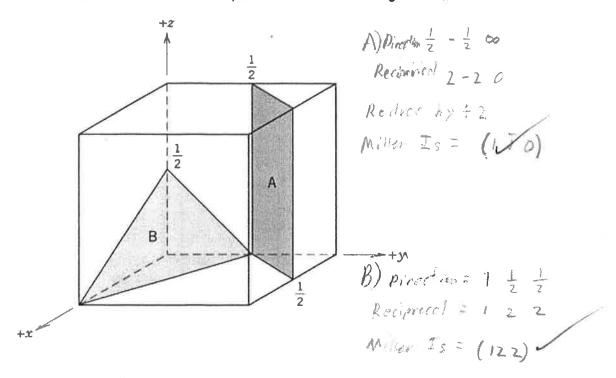
L.D. =
$$\frac{\alpha + 0ms}{Qength} = \frac{2}{\sqrt{2}\alpha} = \frac{2}{\sqrt{2} \cdot 2/1.74 \times 10^{2}} = \frac$$

$$PD = \frac{\text{atoms}}{\text{aveq}} = \frac{2}{a \times \sqrt{2}a} = \frac{2}{2R\sqrt{2} \times \sqrt{2}(2R\sqrt{2})} = \frac{2}{2(1.74 \times 10^8)\sqrt{2}} \times \sqrt{2}(2.1.74 \times 10^8)\sqrt{2}$$

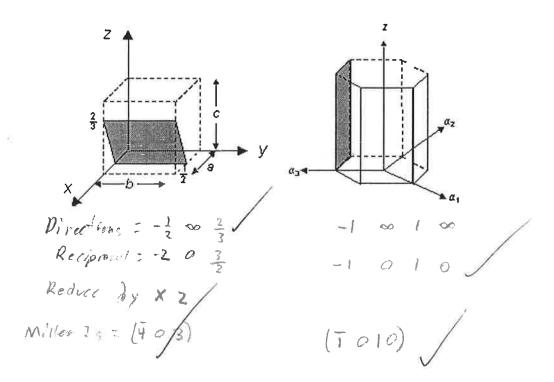
D. Determine the density of BaTiO₃, which forms a perovskite crystal structure, shown below:

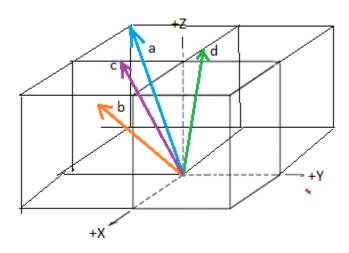

	Ionic Radius (nm)	Atomic mass (g/mol)
Ba (Corner)	0.136	137.3
O (Face center)	0.140	16
Ti (Middle)	0.145	47.87

$$\frac{10.137.32}{(2R_{H0} + 2R_{0})^{3}} + \frac{1.97.872}{(6.072F)^{3}} + \frac{16.2}{mol} = \frac{10.51E-2/5}{(6.072F)^{3}} + \frac{10.51E-2/5}{mol} = \frac{10.51E-2/5}{mol}$$


$$\frac{(2R_{H0} + 2R_{0})^{3}}{N^{2}} = \frac{(6.51E-2/5)}{mol} = \frac{10.51E-2/5}{mol}$$

$$\frac{(6.51E-2/5)}{N^{2}} = \frac{10.51}{mol} = \frac{10.51E-2/5}{mol}$$


E. What are the indices for the directions represented by the vector that has been drawn within a unit cell?


F. Determine the Miller indices for the planes shown in the following unit cell:

G. What are the Miller indices for the planes shown below?

- H. Within a cubic unit cell, sketch the following directions:
 - (a) $[\overline{1}\overline{1}I]$, (b) $[\overline{1}\overline{2}I]$,
- (c) $[0\overline{1}2]$, (d) $[\overline{1}03]$.

I. Sketch the $[1\bar{2}\bar{2}3]$ direction in a hexagonal unit cell.

