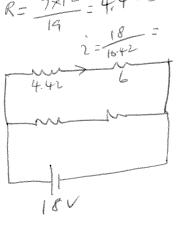
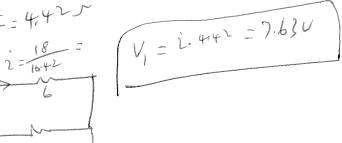
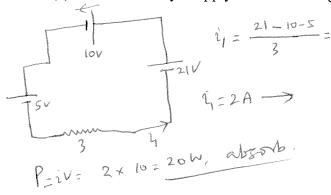

PHYS 212 Test #4

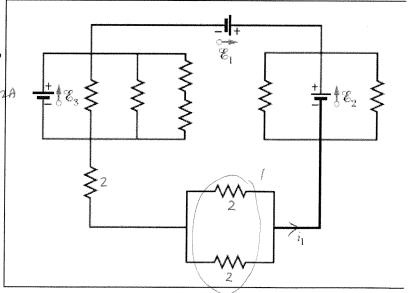

Spring 2012 Name: KEY

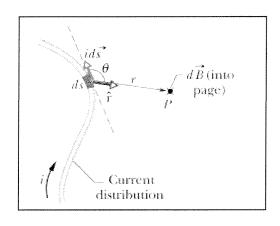

Ohm's law: v = iR

R in Series = add; R in parallel= $R^{-1}=R_1^{-1}+R_2^{-1}+R_3^{-1}...$

1. In the figure below, an ideal battery of emf = 18 V is connected to a network of resistances R_1 =7 Ω , $R_2 = 12 \Omega$, $R_3 = 6 \Omega$, $R_4 = 4 \Omega$, and $R_5 = 5 \Omega$. What is the potential difference (in V) across






2. In the figure below, the ideal batteries have emfs ϵ_1 = 10V, ϵ_2 = 21V, and ϵ_3 = 5V, and the resistances are each 2.0 Ω .

- (a) Determine the current i_1 ?
- (b) What is the power of battery 1?
- (c) Does the battery1 supply or absorb energy?

III. A current-length element $id\overrightarrow{s}$ produces a differential magnetic field $d\overrightarrow{B}$ at point P, directed into the page there. Its value is given by Biot-Savart law as follows: $(\mu_0 = 4\pi x 10^{-7} \text{ T.m/A})$

$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{i \, d\vec{s} \times \hat{\mathbf{r}}}{r^2}$$
 (Biot–Savart law).

1. Show that the magnetic field at C due to a circular arc of wire is given by the following equation.

$$B = \frac{\mu_0 i \phi}{4\pi R}$$
 (at center of circular arc).

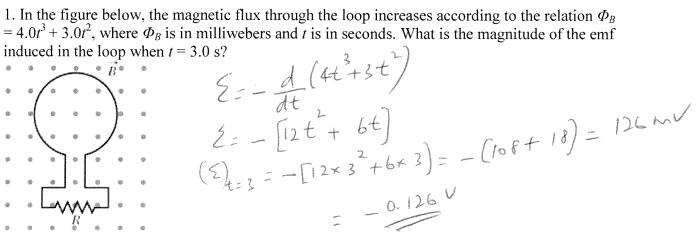
2. In the Figure below, current i = 56.2 mA is set up in a loop having two radial lengths and two semicircles of radii a = 5.72 cm and b = 9.36 cm with a common center P. What are the (a) magnitude and (b) direction (into or out of the page) of the magnetic field at P

B due to 1br 1br there win he zero because
$$\theta = 0$$
 or 180

$$B_{1} = \frac{\mu_{0} i \cdot \pi}{4\pi a} \text{ interpar}$$

$$B_{1} = \frac{\mu_{0} i \cdot \pi}{4\pi b} + \frac{\mu_{0} i \cdot \pi}{4\pi a}$$

$$B_{1} = \frac{4\pi \mu_{0} \times 0.0561 \times \pi}{4\pi \times 9.36 \times 10} + \frac{4\pi \mu_{0} \times 0.0561 \times \pi}{4\pi \times 0.0571}$$


$$= 0.0186 \times 10^{5} + 0.0106 \times 10^{5}$$

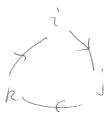
$$\lim_{n \to \infty} = \frac{4.96 \times 10^{5}}{4.96 \times 10^{5}} + \frac{4.96 \times 10^{5}}{4.96 \times 10^{5}}$$

IV. Faraday's law of induction is given by:

$$\mathcal{E} = -N \frac{d\Phi_B}{dt}$$

1. In the figure below, the magnetic flux through the loop increases according to the relation $\Phi_B = 4.0t^3 + 3.0t^2$, where Φ_B is in milliwebers and t is in seconds. What is the magnitude of the emf induced in the loop when t = 3.0 s?

V. A 2.0 μC particle moves through a region containing the magnetic field -20 îmT and the electric field 350 $^{\hat{j}}$ V/m. At one instant the velocity of the particle is (5 \hat{i} - 7 \hat{j} + 9 \hat{k}) km/s. At that instant and in unit-vector notation, what is the net electromagnetic force (the sum of the electric and magnetic forces) on the particle?


(Net force on a moving charge in electric and magnetic fields: $\vec{F} = q\vec{E} + q\vec{v} \times \vec{B}$)

(Net force on a moving charge in electric and magnetic fields:
$$\vec{F} = q\vec{E} + q\vec{v} \times \vec{B}$$
)

$$\vec{F} = q\vec{E} + q\vec{J} \times \vec{E}$$

$$= 2 \times 10 \quad (\vec{E} + \vec{J} \times \vec{B})$$

$$= 2 \times 10 \quad (\vec{S} + \vec{J} \times \vec{B}) \quad (\vec{J} + \vec{J$$

