Show your work explicitly. Time: 50 min.

A. Suppose that on a linear temperature scale X, water boils at -40.5°X and freezes at -175°X. What is a temperature of 299 K on the X scale? (Approximate water's boiling point = 373 K, and freezing point = 273 K)

C 1,		
	X	K
B-P	_40.5	373
C.P	× 175	299

$$\frac{X - (-175)}{-40.5 - (-175)} = \frac{299 - 273}{373 - 273}$$

$$\frac{X + 175}{175 - 40.5} = \frac{26}{100}$$

$$\frac{X + 175}{134.5} = \frac{26}{100}$$

$$\frac{X + 175}{134.5} = \frac{134.5}{100} \times \frac{25}{100} = \frac{34.97}{100}$$

$$\frac{X + 175}{100} = \frac{134.5}{100} \times \frac{25}{100} = -\frac{140.03}{100}$$

$$\frac{X - -175 + 34.97}{299 \times 100} = -\frac{140.03}{100}$$

The volume expansion is given by:

$$\Delta V = \beta V_0 \Delta T$$

B. Suppose that the steel gas tank in your car is completely filled when the temperature is 17 °C. How many gallons will spill out of the twenty-gallon tank when the temperature rises to 35 °C? Include the expansion of the steel tank.

(Volumetric coefficient of thermal expansion (β) of gasoline = 950 x10⁻⁶(C°)⁻¹ and Steel = 36 x10⁻⁶(C°)⁻¹)

e expansion of the steel tank.
c coefficient of thermal expansion (
$$\beta$$
) of gasoline = 950 x10⁻⁶(C°)⁻¹ and Steel = 36 x10⁻⁶(C°)⁻¹
By $_{gas} = 950 \times (5 \times 20 \text{ gal} \times (35-17)) = 0.342 \text{ gal}$
Dy $_{fank} = 36 \times (5 \times 20 \text{ gal} \times (35-17)) = 0.01296 \text{ gap}$
Spill = 0.342 - 0.01296 = 0.333 gap

$$Q = mc\Delta T$$
 $Q = mL$ $dQ = mcdT$ $\Delta S = S_f - S_i = \frac{\Delta Q}{T} = \int_i^f \frac{dQ}{T}$

C. An insulated container contains 200 g of water at 20°C. A lump of aluminum of mass 100 g is heated in boiling water (100°C) and transferred to the water.

(Specific heat: $c_W = 4180 \text{ J/kg} \cdot \text{K}$, $c_{Al} = 900 \text{ J/kg} \cdot \text{K}$)

- 1. What is the equilibrium temperature of the aluminum-water system?
- 2. What is the entropy change for water?
- 3. What is the entropy change for aluminum?
- 4. What is the entropy change for aluminum-water system?

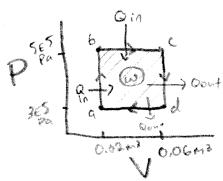
MCWAT = MCAIAT

$$(.2)(4180)(T-293.15) = (.1)(900)(373.15-T)$$

836T - 245073.4 = 33583.5 - 90T

2

Ideal gas law:
$$PV = nRT$$
; $R = 8.315 \text{ J/mol.K.}$


First Law of T.D:
$$\Delta E_{int} = Q - W$$

Heat =
$$Q = nC\Delta T$$
;

$$C_V=(3/2)R$$
, $C_p=C_V+R$ for monatomic gas

Efficiency =
$$\frac{|W|}{|Q_H|}$$

- D. Three mol of a monatomic ideal gas initially at a pressure of 3.0×10^5 Pa and volume of 0.02 m³ undergoes the following cycle: (1) heated at constant volume to a pressure of 5.0×10^5 Pa, (2) then allowed to expand at constant pressure to a volume of 0.06 m³, (3) then cooled down at constant volume to the initial pressure, and (4) finally compressed at constant pressure to its initial volume.
- (a) Draw a P-V diagram of the cycle.
- (b) Identify the paths where heat goes in or out.
- (c) The net work done by the gas.
- (d) Energy transferred as heat to the gas.
- (e) The efficiency of the cycle.

$$W_{\text{net}} = (0.06 - 0.02) \times (5E5 - 3E5)$$

$$W_{\text{net}} = (.04) \times (2E5) = 8000 \text{ J}$$

$$g_{in} = 56.053.567 = 56.054 kJ$$

$$\frac{P_{a}V_{a}}{NR} = \frac{600^{\circ}}{74.912}$$

$$\varepsilon = \frac{\omega}{Qin} = \frac{80005}{560545}$$
 $\varepsilon = 0.143 \text{ or } 14.3\%$