PHYS 202 Spring 2023 Test #2 Equations Sheet

- 1. Ohm's law: V = IR 2. Electric Power = P = IV 3. Electrical energy = IVt
- 4. Resistance in terms of resistivity and dimensions: $R = \rho \frac{L}{A}$

5. Capacitors:	$C = \frac{q}{V}.$	$C = \kappa \varepsilon_0 \frac{A}{d}.$	$Energy = \frac{1}{2}qV$	$Y = \frac{1}{2}CV^2$	$\frac{1}{2} = \frac{1}{2} \frac{q^2}{C}.$
----------------	--------------------	---	--------------------------	-----------------------	--

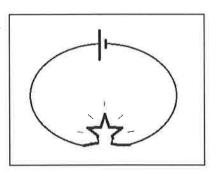
6. Electric potential	7. Electric potential in	8. Electric field due to a	9. Electric field (E) from
due to a point	terms of EPE and	point charge (Q) at a	potential gradient:
charge (Q) at a	point charge (Q):	distance r:	
distance r:			
$V = k \frac{Q}{r}$	$V = \frac{EPE}{Q}$	$E = k \frac{ Q }{r^2}$	$\vec{E} = -\frac{\Delta V}{\Delta X}$

10. Combination	Resistors	Capacitors
Series	$R_s = R_1 + R_2 + R_3 + \dots$	$\frac{1}{C_S} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots$
Parralel	$\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$	$C_P = C_1 + C_2 + C_3 + \dots$

11. Magnitude of the electron charge = $|e| = 1.6 \times 10^{-19} \text{ C}$. 1 Btu = 1055 J 1 cal = 4.2 J

Name: KEY Spring 2023 Test #2 I. Select the correct answer for the following multiple choice questions and write your answer in the line next to the question number. **2** 1. What is the SI unit for electromotive force? $f. \Omega$ c. W d. J e. V a. N b. A **C** 2. Identify the smallest energy unit below: c. eV b. Btu d. food Calorie e. calorie a. joule_ **a** 3. An appliance is connected to a 120-volt outlet and it draws a current of 0.25 A. P= IV = 0.35 x 120 = 30 W What is the power of the appliance? c. 80 W d. 120 W a. 30 W b. 60 W e. 240 W 4. Which one of the following biomedical application deals with the brain? c. EEG d. ERG a. EGK b. EKG e. CEG **3** 5. In a common household circuit, devices are connected in A. Series B. Parallel **2** 6. A metal wire of length L and cross-sectional area A, has a resistance R. What will be the resistance of the same material and length but twice the radius? d. ½ R b. 2R c. R e. 1/4 R **b** 7. Which one of the following is placed between capacitor plates to increase the capacitance? a. Conductor b. Dielectric c. Resistance d. Semiconductor a, d, e8. Identify the scalars among the quantities below? (Multiple Answers) c. Electric force a. Electric potential b. Electric field d. Electric energy e. Electric power A 9. What is the charge in the 3 μ F capacitor for the capacitor circuit shown below? a. 18 μC b. 27 μC c. 45 µC d. 54 μC e. 63 μC 2=cv = 2Mx9=18MC Same charge on 3 + 6 Dince they are in & $\boldsymbol{\mathcal{C}}$ 10. What is the voltage across the 7 Ω resistor in the circuit shown below? a. 1.2 V b. 2.0 V c. 2.8 V d. 6.0 V e. 8.0 V 8 V 4V 210 Ω

11-12) A light bulb is connected to a battery as shown below.

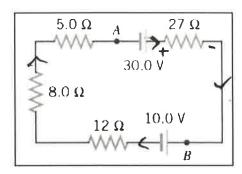

• 11. What is the direction of the current flow?

^ 12. What is the direction of the electron flow?

Answers for 11 & 12

a. Clockwise

b. Counterclockwise



End of MC questions-----

II. Consider the circuit shown in the right.

a. Show the direction of current for the circuit shown, in the circuit? clockwise

b. Determine the magnitude of the current for the circuit shown?
$$I = \frac{8V}{8R} = \frac{30-10}{12+8+5+27} = \frac{20}{52} = 0.384A$$

2

c. Determine $V_A - V_B$:

3

3
$$V_A + 30 - 27 \times 0.384 = V_B$$

 $V_A + 19.63 = V_B$
 $V_A - V_B = -19.63$ volt

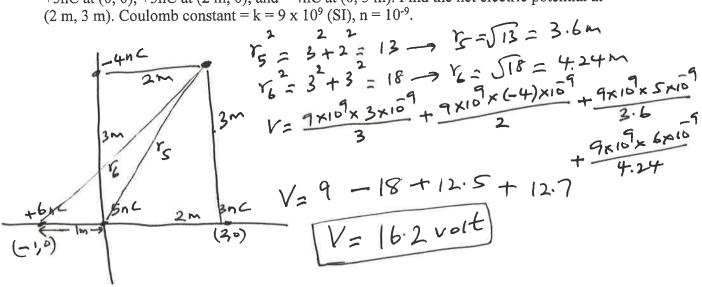
III. Estimate the cost of electricity for operating a clothes iron which consumes 4.5 A of current when plugged in a 120-V outlet. It is used 15 minutes a day for 20 days a month for 1 year. Assume a cost of 14 cents per kWh.

for 1 year. Assume a cost of 14 cents per kWh.

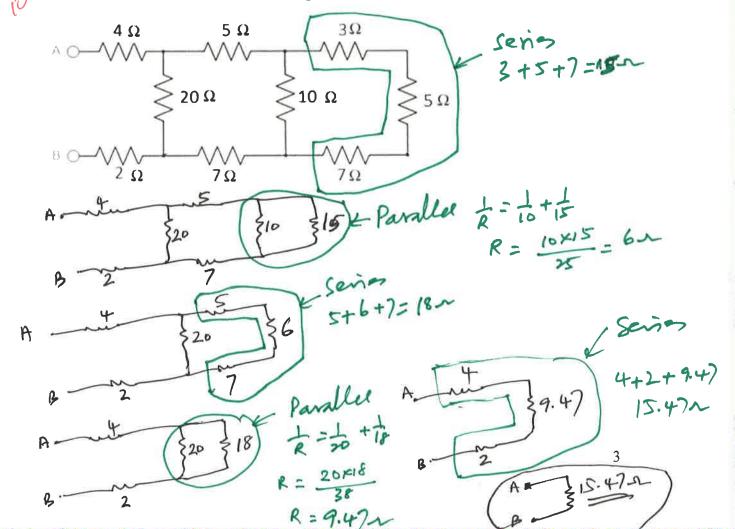
$$P = 4.5 \times 120 \text{ W}$$

Cost = $\frac{4.5 \times 120 \times 15}{1000} \times 20 \times 12 \times 0.14 = 4.54$

Cost = $\frac{4.5 \times 120 \times 15}{1000} \times 20 \times 12 \times 0.14 = 4.54$


IV. An evacuated tube uses an accelerating voltage of 48.4 kV to accelerate electrons to hit a copper plate and produce x rays. Non-relativistically, what would be the maximum speed of these electrons? [$m_e = 9.11 \times 10^{-31} \text{kg}$, $|Q_e| = 1.6 \times 10^{-19} \text{C}$]

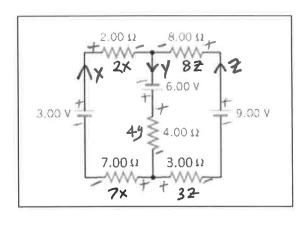
speed of these electrons? [
$$m_e = 9.11 \times 10^{-4}$$
]


 $KE = \frac{1}{2}mv^2$ Voltage = $V = \frac{EPE}{Q}$
 $V = \frac{1}{2}mv^2 = \frac{1}{2}mv^2$

Voltage =
$$V = \frac{1}{Q}$$
 $V = \frac{2QV}{M}$
 $V = \frac{2QV}{M}$
 $V = \frac{2QV}{M}$
 $V = \frac{13.0 \times 10^{-21}}{48.4 \times 10^{-21}}$
 $V = \frac{2QV}{M}$
 $V = \frac{13.0 \times 10^{-21}}{49.11 \times 10^{-21}}$

V. At a distance r from a point charge Q, the electric potential, V is given by: $V = k \frac{Q}{r}$. Four point charges lie in a Cartesian coordinate system as follows: +6nC at (-1 m, 0), +5nC at (0, 0), +3nC at (2 m, 0), and -4nC at (0, 3 m). Find the net electric potential at (2 m, 3 m). Coulomb constant = $k = 9 \times 10^9$ (SI), $n = 10^{-9}$.

VI. Combine all the resistances into a single one, between A & B, for the circuit shown:

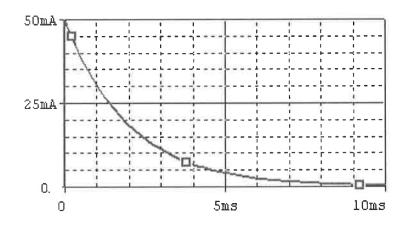


VII. Kirchhoff's Rules.

For the circuit shown:

- 1. Assign three unknown currents.
- 2. Identify the low and high potentials for the resistors and batteries.
- 3. Write down the potential differences across the resistors in terms of the assigned currents and the given resistance values.
- 4. Write down the junction rule equation using the assigned currents.

5. Write down the loop rule equation, for the left loop.


 $9 - 9 \times + 49$ 6. Write down the loop rule equation, for the right loop. [No need to solve the simultaneous equations]

$$9+6 = 82+4y+32$$
 $15 = 4y + 112$

VIII. RC circuits: Time constant =
$$\tau$$
 = RC,

$$I = I_0 e^{-\frac{t}{RC}}$$

The variation of the Current as a function of time is shown below for an RC circuit.

Time

- 1. Read the current at t = 0? **50 m f**
- 2. Read the current at t = 1 ms? 30 m A
- 3. Calculate the time constant using $I = I_0 e^{-\frac{t}{RC}}$.

$$30 = 50 e^{-\frac{1}{R}C}$$
 $30 = 6 - \frac{1}{R}C$
 $30 = e^{-\frac{1}{R}C} \rightarrow 0.6 = e^{-\frac{1}{R}C}$
 $1 = \frac{30}{50} = e^{-\frac{1}{R}C} \rightarrow \frac{1}{8} = \frac{1}{$