

Coulomb's law

$$F = k \frac{|Q_1||Q_2|}{r^2}$$

 $F = k \frac{|Q_1||Q_2|}{r^2}$ Coulomb's constant = k = 9 x 10⁹ (SI)

1. In the Bohr model of the hydrogen atom, the electron is in a circular orbit about the nuclear proton at a radius of 5.29 x 10^{-11} m as shown below. The mass of the electron is 9.11 x 10^{-31} kg. Determine the speed of the electron. [Centripetal Force = $F_C = \frac{mv^2}{r}$]

Ohm's Law V = IR

2a. What is the direction of current for the circuit shown?

b. Counter clockwise

2b. Determine the magnitude of the current for the circuit shown?

a. 0.38 A

b. 0.40A

c. 0.50 A

d. 0.60 A

e. 0.20 A

2c. What is the voltage across the 12 ohm resistor?

U= DR = 0.4×12= 4.8 Volt

Capacitance = C = Q/V

3. What is the charge in the 3 μ F capacitor for the circuit shown below?

- III. Combine all the resistances into a single one, between A & B, for the circuit shown:
- b. What is the voltage across the 4Ω resistor when a 6-v battery is connected between A and B.

IV. The magnetic field due to a long straight wire, carrying a current I, at a distance r is given by;

$$(\mu_0 = 4\pi x 10^{-7} \text{ T.m/A})$$

$$B = \frac{\mu_0 I}{2\pi r}$$

- a. Show the magnetic field, circling the long-wire carrying current I (out of page and into page) using circles with directions, above.
- b. In the figure below, two long straight wires are perpendicular to the page and separated by distance $d_1 = 0.75$ cm. Wire 1 carries 6.5 A into the page and wire 2 carries 4.5 A out of the page. What are the (a) magnitude and (b) direction of the net magnetic field due to the two currents at point P? $(d_2 = 1.50 \text{ cm from wire 2})$

carries 4.5 A out of the page. What are the (a) magnitude and (b) direction of the net magnifield due to the two currents at point
$$P$$
? ($d_2 = 1.50$ cm from wire 2)

$$B_1 = \frac{4\pi \times 10 \times 6.5}{2\pi \times 2.25 \times 10}$$

Wire 20

$$B_2 = \frac{4\pi \times 10 \times 4.5}{2\pi \times 1.50 \times 10^2} = \frac{6 \times 10 \times 10^2}{2\pi \times 1.50 \times 10^2}$$

But $= \frac{6 \times 10^2}{2\pi \times 1.50 \times 10^2}$

But $= \frac{6 \times 10^2}{2\pi \times 1.50 \times 10^2}$

But $= \frac{6 \times 10^2}{2\pi \times 1.50 \times 10^2}$