5

PHYS 201 Fall 2025 Test #3 DLV2 Name: Answer Kory, OL V2

I. For the following multiple-choice questions, write your answer in the line next to the question number. For questions 6, 8, and 10 show your work in the diagram.

36°/12 1. What is the angular speed in degree/hour of the hour hand of a standard analog watch? a. 6 b. 12 c. 15 d. 30 e. 36

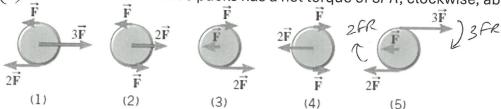
2. What is the angular speed in rad/s of the second hand of an analog watch? a. 1.75×10^{-3} b. 0.105 c. 8.33×10^{-3} d. 8.73×10^{-3} e. 1.45×10^{-4}

2. The radius of each wheel on a bicycle is 0.40 m. The bicycle travels at 16 m/s. What is the angular velocity (in SI units) of the bicycle wheels (wheels do not slip)?

a. 2.5

b. 6.4

c. 16


d. 30

e. 40

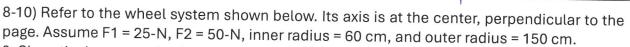
4-5) Five hockey pucks are sliding across frictionless ice. The drawing shows a top view of the pucks and the three forces that act on each one. As shown, the forces have different magnitudes (F, 2F, or 3F), and are applied at different points on the pucks.

(4) 4. Which one of the five pucks is in Equilibrium?

(5) 5. Which one of the five pucks has a net torque of 5FR, clockwise, about the center?

6-7) The drawing below illustrates an overhead view of a door and its axis of rotation. The axis is perpendicular to the page. There are four forces acting on the door, and they have the same magnitude.

6. Show the line-of-action and lever-arm for force \textbf{F}_{4} in the diagram.


_____7. Which force will provide zero torque, about the axis of rotation?

a. **F**₁

b. **F**₂

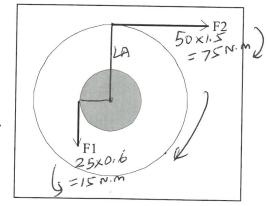
C. **F**₃

d. **F**₄

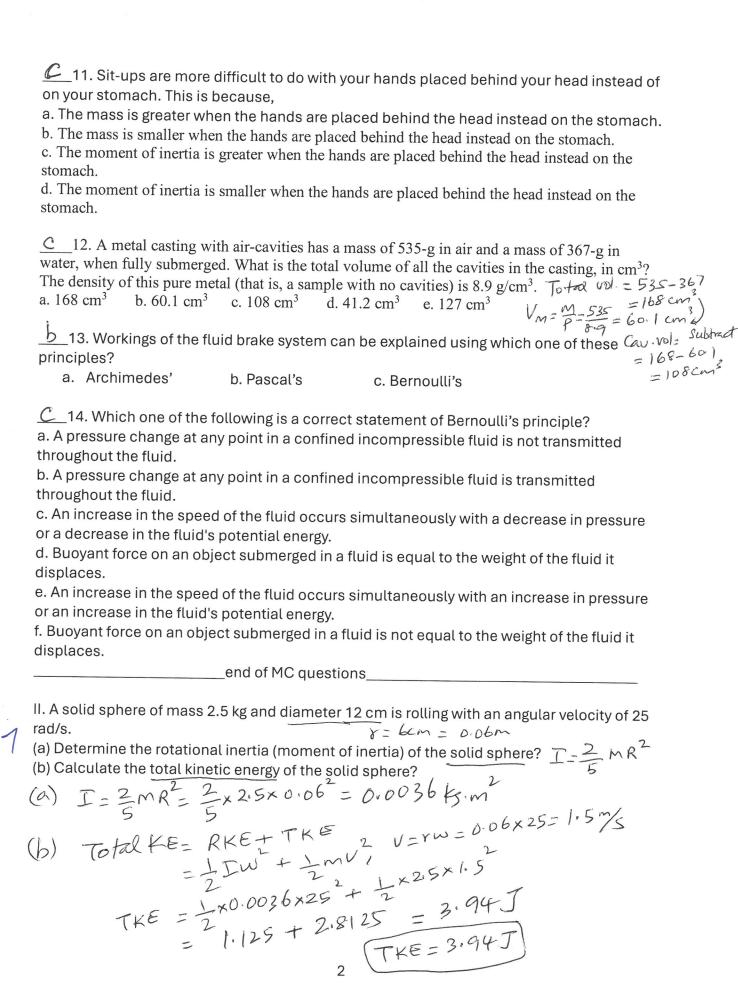
8. Show the lever-arm for the force F_2 in the diagram.

<u>C</u> 9. What is the net torque acting on the wheel?

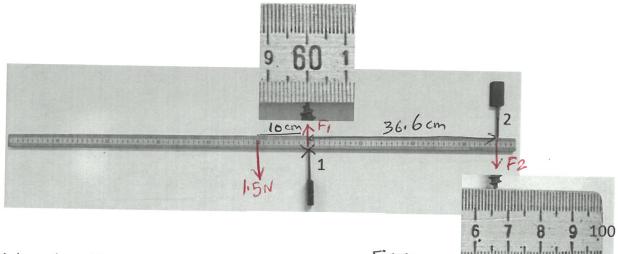
a. 90 N.m, clockwise


b. 75 N.m, counter-clockwise

c. 60 N.m, clockwise


d. 60 N.m, counter-clockwise

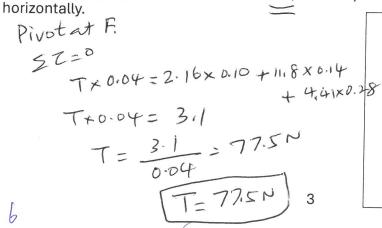
e. 6000 N.m clockwise

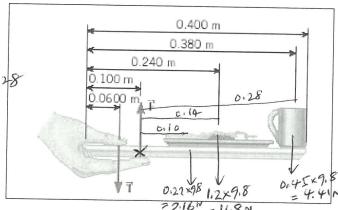

10. Show the direction of rotation of the wheel in the diagram.

Top view of door

III. A uniform meter stick of weight 1.5 N is supported using two supports as shown below. Exact location of the support points can be read using the magnified portions.

- 2 1. Location of the center of gravity of the meter stick. 50cm
- 2 2. Location of the support point 1: 60 Cm
- 2 3. Location of the support point 2: 96.6 cm
- 4. Draw a free body diagram for the meter stick in the diagram. (Red Vectors)
- 5. Determine the force exerted in support point 2. $F_2 = \frac{1}{2}$


Pivot at 1:
$$27=0$$


$$F_{2} \times 366 = 1.5 \times 10$$

$$F_{2} = \frac{1.5 \times 10}{36.6} = 0.41 \text{ N}$$

$$F_{2} = 0.41 \text{ N}$$

IV. A uniform lunch tray is being held in one hand, as the drawing illustrates. The mass of the tray is 0.22 kg. On the tray is a 1.2 kg plate of food and a 0.45 kg cup of coffee. Draw a free-body-diagram and obtain the force, T (in SI unit) exerted by the thumb, to hold the plate

V. A soccer player extends her lower leg in a kicking motion by exerting a force with the muscle above the knee in the front of her leg. Starting from rest she produces an angular velocity of 25 rad/s by swinging her lower leg by 80 degrees.

So = 80 deg =
$$80 \times \frac{\pi}{180} \frac{\text{deg}}{\text{deg}} = 1.396 \text{ rad}$$

 $f = 1.396 \text{ rad}$

2. Calculate the angular acceleration of the kick.

$$\omega_0 = 0, \quad \omega_0 = 25 \text{ ma/s}, \quad \theta = 1.396 \text{ md}, \quad \alpha = ?$$

$$\omega_0^2 = \omega_0 + 2\alpha\theta \qquad = 1.396 \quad \text{md}, \quad \alpha = ?$$

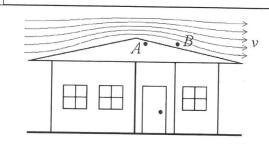
$$25^2 = 0 + 2\alpha \times 1.396 \quad \rightarrow \alpha = \frac{25}{2 \times 1.396} = 224 \text{ ma/s}^2$$

3. Determine the torque, if her lower leg has a moment of inertia of 0.750 kg·m².

4. What is the force exerted by the muscle if its effective perpendicular lever arm is 1.90 cm? · 019 m

- VI. A house roof with an area of 190 m² is shown. Wind blows over the top with a speed of 45 m/s. The air inside the house is stagnant. The density of air is 1.29 kg/m³.
 - 1. What is the pressure difference $P_A P_B = ?$
 - 2. What is the force exerted on the roof due to the wind?

1.
$$P_{A} + \frac{1}{2} e^{y_{A}} + e^{gy_{A}} = P_{B} + \frac{1}{2} e^{y_{B}} + e^{gy_{B}}$$


$$P_{A} - P_{B} = \frac{1}{2} e^{y_{B}}$$

$$P_{A} - P_{B} = \frac{1}{2} \times 1.29 \times 45$$

$$P_{A} - P_{B} = 1366 P_{B}$$

2.
$$F = (P_A - P_B) \times A = 1306 \times 190$$

 $F = 2.48 \times 10^5 N$

$$P_1 + \frac{1}{2} \rho v_1^2 + \rho g y_1 = P_2 + \frac{1}{2} \rho v_2^2 + \rho g y_2.$$

