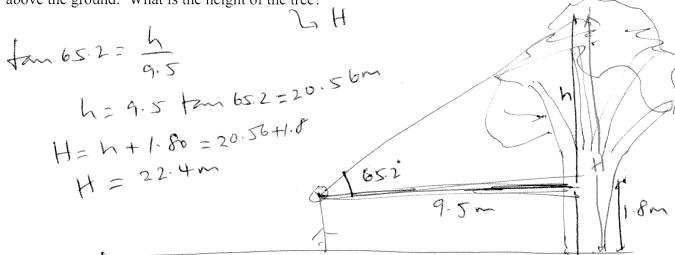

PHYS 101H	Summer 20	16 Test #	[‡] 1 Name	: KEY	
A. Select the correct answer for the following multiple choice questions and write your answer in the line next to the question number.					
2. Today, the standard kilogram is defined in terms of Answers for 1 & 2 a. the distance from the earth's equator to the north pole. b. the length traveled by light in vacuum during the time interval of 1/299792458 of a second. c. the electromagnetic waves emitted by cesium atoms d. the standard bar made of platinum-iridium alloy e. the standard cylinder made of platinum-iridium alloy f. the speed of sound					
$\frac{e}{a. 3}$ 3. The m	umber of base b. 4	units in SI: c. 5	d. 6	e. 7	f. 8
	one of the follob. ampere		SI base unit? d. killometer	r e. mole	
Answers for 7 a. time b 9. For the decide whether	b. displacemermotion describ	bed in the grap	eleration h, Position	d. position	e. velocity
a) accelerating b) decelerating c) moving at a d) moving at a	constant veloc	ity		Time	
b 10. Which one of the following is a vector? a. Distance b. Displacement c. Speed d. Time e. Mass					

1


- 11. Which pair of the following physical quantities are zero at the highest point of the trajectory of a two dimensional projectile motion?
- a. horizontal velocity and vertical velocity
- b. horizontal acceleration and vertical velocity
- c. vertical acceleration and vertical velocity
- d. horizontal velocity and horizontal acceleration
- 12-18) Deal with the one-dimensional motion of an object, which is graphed below.

- **b** 12. The above graph is,
- a. time versus velocity
- b. velocity versus time
- b 13. What is the instantaneous velocity of the object at 6 s?
- a. 20 m/s
- b. 24 m/s
- c. 25 m/s
- d. 30 m/s
- e. 38 m/s
- 2 14. What is the instantaneous acceleration of the object at 5 s?
- a 15. What is the instantaneous acceleration of the object at 15 s?
- h 16. What is the instantaneous acceleration of the object at 25 s? Answers for 14-16
- a. 0 m/s^2
- b. 1.0 m/s^2
- c. 2.0 m/s^2 d. 3.0 m/s^2 h. -2.0 m/s^2 i. -3.0 m/s^2

- f. -0.5 m/s^2
- g. -1.0 m/s^2

- A 17. How far the object travels during the first 6 s?
- d 18. How far the object travels during the entire trip?
- Answers for 17-18
- a. 72 m
- b. 144 m
- c. 336 m
- d. 552 m
- e. 768 m

C. For the three vectors shown below, (A = 30, B = 10, C = 15) complete the table:

+y	Vector	+X	+Y
		component	component
B	A	306050	-30 Sinsi
35.0° 50.0° +x	В	0	10
ē	С	- 15 loss 5 -12.3	-1551735
T T	A + B + C	7.00	-21.6

D. Find the magnitude and direction of the resultant vector, $\mathbf{A} + \mathbf{B} + \mathbf{C}$.

E. Equations of Kinematics for constant acceleration are given below:

1.	2.	3.	4.	5
$v = v_0 + at$	$x = \frac{1}{2}(v + v_0)t$	$x = v_0 t + \frac{1}{2}at^2$	$v^2 = v_0^2 + 2ax$	$x = vt - \frac{1}{2}at^2$

1. Derive the 5th equations using the first two.

$$X = \frac{1}{2}(v+v_0)t$$

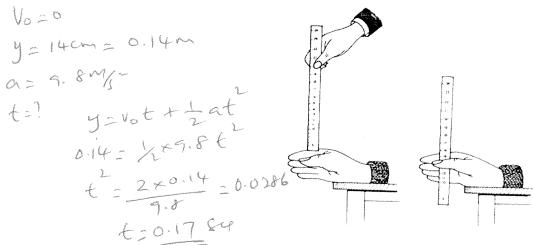
3. A car is traveling at 20.0 m/s, and the driver sees a traffic light turn red. After 0.530 s (the reaction time), the driver applies the brakes, and the car decelerates at 7.00 m/s^2 What is the stopping distance of the car, as measured from the point where the driver first sees the red light?

- 2. A football is kicked with an initial velocity of 23 m/s at an angle of 32⁰ above ground.
- a. What are the horizontal and vertical components of the initial velocity?
- b. What is the hang-time of the football?
- c. What is the range (horizontal distance) of the football?

c. What is the range (horizontal distance) of the football?

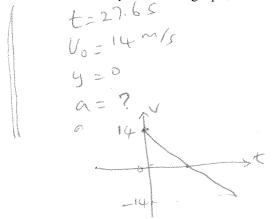
A.
$$\frac{2^3}{23 \text{ fin}_{32}}$$

b. $\int \frac{y=0}{0}, \frac{V_{0y}=12\cdot 2}{12\cdot 2} = \frac{12\cdot 2}{12\cdot 2} = \frac{12$


F. Equations of Kinematics for constant acceleration are given below: (Earth's acceleration due to gravity = 9.8 m/s², down. Ignore air resistance)

1.	2.	3.	4.
$v = v_0 + at$	$y = \frac{1}{2}(v + v_0)t$	$y = v_0 t + \frac{1}{2} a t^2$	$v^2 = v_0^2 + 2ay$

1. A penny is dropped from rest from the top of a high-rise building, 325-m high. Find the speed at which the penny will strike the ground.


1	1		
	Vo = 0 Q = 9.8 m/s Y = 3 25 m	$V = V_0 + 2\alpha y$ $V = 0^2 + 2 \times 9.6 \times 5.25$ $V = 6370$ $V = 99.8 \text{ M/s}$	

2. In an effort to measure the reaction time, a ruler is dropped vertically as shown below. Initially the 0-cm mark is between the thumb and fingers of the catcher. If the ruler is caught at 14 cm, calculate the reaction time of the catcher.

- 3. An astronaut on a distant planet wants to determine its acceleration due to gravity. The astronaut throws a rock straight up with a velocity of + 14.0 m/s and measures a time of 27.6 s before the rock returns to his hand.
- a. What is the acceleration due to gravity on this planet?

0

tion.

$$y = V_0 t + \frac{1}{2}at$$

 $0 = 14 \times 27.6 + \frac{1}{2}a = 27.6^2$
 $a = -\frac{2 \times 14 \times 27.6}{27.6} = \frac{2 \times 14 \times 27.6}{27.6} = \frac{2 \times 14 \times 27.6}{27.6} = \frac{2}{27.6}$