1. The following questions relate to benzene:

a. Determine a reducible representation for all 3N motions of this molecule and reduce it to find the symmetries of the translations, rotations and vibrations.

<u>NOTE</u>: The C₂ axis is colinear with C₆ (=C₆³); the C₂' and C₂" are perpendicular C₂ axes: C₂' axes lie along C-H bonds and C₂" axes lie between C-H bonds. Similarly, the σ_v planes contain C-H bonds while the σ_d planes lie between them.

- b. How many vibrations should benzene contain? Does your list of vibrational symmetries in (a) correctly represent this number of vibrational motions? Briefly explain how this can be the case.
- c. How many peaks do you expect to observe in the IR spectrum of benzene? In the Raman spectrum?
- d. Next, let's focus on only the **6** C-H stretches of benzene, represented by 6 vectors $(v_1 v_6)$ along the C-H bonds. Generate a new reducible representation that shows how these stretches transform under the operations of the group.
- e. What are the symmetries of the individual C-H stretching vibrations? How many C-H stretching peaks do you expect to observe in the IR spectrum of benzene?
- f. You should have found in (e) that one of the C-H stretches has b_{1u} symmetry. Use a projection operator to project one of the six stretching vectors (I chose v_1); then, use your projection to determine the appearance of the b_{1u} C-H stretching vibration and draw a diagram.

<u>NOTE</u> regarding the operations in each class: $2C_6 = C_6^1$ and C_6^5 ; $2C_3 = C_3^1$ and C_3^2 ; $2S_3 = S_3^1$ and S_3^5 (where, in this case, S_3^5 looks like S_3^2); $2S_6 = S_6^1$ and S_6^5

2. Consider the silane derivative below (in the staggered conformation, as shown):

- a. Obtain a representation (Γ_R) based on all 3N molecular motions.
- b. Reduce Γ_{R} and specify the symmetries of translations, rotations and vibrations of the molecule.
- c. Which vibrations are IR-active? Raman-active? Specify how many peaks you would expect to find in each spectrum.
- d. Will the IR and Raman spectra be distinguishable from each other? (That is, will their peaks occur at the same frequencies?) Briefly, why or why not?
- Returning to the silane derivative in Problem 2 above, suppose that we were specifically interested in the Si-I vibrations, rather than all vibrations of the molecule. Determine a reducible representation for these vibrations alone, reduce it to find their symmetries, and determine the number of Si-I peaks expected in the IR and Raman spectra.

4. One of the vibrations of square-planar XeF₄ is diagrammed below:

e. Use the arrows shown to determine a representation (Γ) for the vibration; compare to the character table to determine its symmetry.

<u>Note</u>: In the D_{4h} group, the C_2 class refers to the C_2 axis that is colinear with the C_4 axis (= C_4^2). The C_2 ' and C_2 " classes refer to perpendicular C_2 axes: C_2 ' axes are along the bonds of the molecule, while C_2 " axes are between the bonds. Similarly, the σ_v planes contain the bonds while the σ_d planes lie between them.

f. Is the vibration IR-active? Raman-active? Justify your answers in a few words.