1. The following questions relate to benzene:

a. Determine a reducible representation for all 3 N motions of this molecule and reduce it to find the symmetries of the translations, rotations and vibrations.

NOTE: The C_{2} axis is colinear with $\mathrm{C}_{6}\left(=\mathrm{C}_{6}{ }^{3}\right)$; the $\mathrm{C}_{2}{ }^{\prime}$ and C_{2} " are perpendicular C_{2} axes: $\mathrm{C}_{2}{ }^{\prime}$ axes lie along $\mathrm{C}-\mathrm{H}$ bonds and C_{2} " axes lie between $\mathrm{C}-\mathrm{H}$ bonds. Similarly, the σ_{v} planes contain $\mathrm{C}-\mathrm{H}$ bonds while the σ_{d} planes lie between them.
b. How many vibrations should benzene contain? Does your list of vibrational symmetries in (a) correctly represent this number of vibrational motions? Briefly explain how this can be the case.
c. How many peaks do you expect to observe in the IR spectrum of benzene? In the Raman spectrum?
d. Next, let's focus on only the $\mathbf{6} \mathbf{C - H}$ stretches of benzene, represented by 6 vectors ($v_{1}-v_{6}$) along the C-H bonds. Generate a new reducible representation that shows how these stretches transform under the operations of the group.
e. What are the symmetries of the individual C-H stretching vibrations? How many C-H stretching peaks do you expect to observe in the IR spectrum of benzene?
f. You should have found in (e) that one of the C-H stretches has $b_{1 u}$ symmetry. Use a projection operator to project one of the six stretching vectors (I chose v_{1}); then, use your projection to determine the appearance of the $b_{1 u} \mathrm{C}-\mathrm{H}$ stretching vibration and draw a diagram.

NOTE regarding the operations in each class: $2 \mathrm{C}_{6}=\mathrm{C}_{6}{ }^{1}$ and $\mathrm{C}_{6}{ }^{5} ; 2 \mathrm{C}_{3}=\mathrm{C}_{3}{ }^{1}$ and $\mathrm{C}_{3}{ }^{2} ; 2 \mathrm{~S}_{3}=\mathrm{S}_{3}{ }^{1}$ and $\mathrm{S}_{3}{ }^{5}$ (where, in this case, $\mathrm{S}_{3}{ }^{5}$ looks like $\mathrm{S}_{3}{ }^{2}$); $2 \mathrm{~S}_{6}=\mathrm{S}_{6}{ }^{1}$ and $\mathrm{S}_{6}{ }^{5}$
2. Consider the silane derivative below (in the staggered conformation, as shown):

a. Obtain a representation $\left(\Gamma_{\mathrm{R}}\right)$ based on all 3 N molecular motions.
b. Reduce Γ_{R} and specify the symmetries of translations, rotations and vibrations of the molecule.
c. Which vibrations are IR-active? Raman-active? Specify how many peaks you would expect to find in each spectrum.
d. Will the IR and Raman spectra be distinguishable from each other? (That is, will their peaks occur at the same frequencies?) Briefly, why or why not?
3. Returning to the silane derivative in Problem 2 above, suppose that we were specifically interested in the Si -I vibrations, rather than all vibrations of the molecule. Determine a reducible representation for these vibrations alone, reduce it to find their symmetries, and determine the number of Si-I peaks expected in the IR and Raman spectra.
4. One of the vibrations of square-planar XeF_{4} is diagrammed below:

$D_{4 h}$	E	$2 C_{4}$	C_{2}	$2 C_{2}{ }^{\prime}$	$2 C_{2}{ }^{\prime \prime}$	i	$2 S_{4}$	σ_{h}	$2 \sigma_{v}$	$2 \sigma_{d}$
Γ										

e. Use the arrows shown to determine a representation (Γ) for the vibration; compare to the character table to determine its symmetry.

Note: In the $D_{4 n}$ group, the C_{2} class refers to the C_{2} axis that is colinear with the C_{4} axis $\left(=\mathrm{C}_{4}{ }^{2}\right)$. The C_{2} ' and C_{2} " classes refer to perpendicular C_{2} axes: $\mathrm{C}_{2}{ }^{\prime}$ axes are along the bonds of the molecule, while C_{2} " axes are between the bonds. Similarly, the σ_{v} planes contain the bonds while the σ_{d} planes lie between them.
f. Is the vibration IR-active? Raman-active? Justify your answers in a few words.

