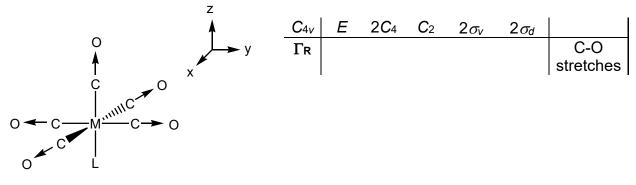

```
Name:
```

Group Theory Mini-Exam – March 3, 2020 (50 pts)

- 1. (10 pts) Please determine the **point group** for each molecule below.
 - a. PF₅



2. (8 pts) Please generate the **transformation matrix** for the $C_2(z)$ operation of the D_{2d} point group by operating on a point, (x, y, z). What is the **character** of the matrix? (It may help to consider allene, a molecule with D_{2d} symmetry, shown below.)

3. (10 pts) Consider the carbonyl stretches in $ML(CO)_5$, depicted with vectors below. Please **generate a reducible representation** (Γ_R) showing how these vectors transform under the operations of the C_{4v} point group. (This would be the first step toward predicting the number of C-O peaks in the IR spectrum.)

<u>Hint</u>: Recall that σ_v planes tend to contain the most bonds; σ_d planes tend to lie between bonds.

4. (8 pts) Please **reduce the reducible representation** (Γ_R) below. Show your work and clearly indicate your final answer.

C _{3v}	Ε	2 C 3	3 <i>σ</i> ν
Γr	12	0	2

- 5. (14 pts) The reducible representation in Question 4 represents all 3N molecular motions in ammonia, NH₃. Please use the C_{3v} character table and the irreducible representations from your answer above to complete the following questions.
 - a. Which irreducible representation(s) describe(s) translational motions?
 - b. Which irreducible representation(s) describe(s) rotational motions?
 - c. Which irreducible representation(s) describe(s) vibrational motions?
 - d. How many **vibrations** are expected for NH₃? Are all of these represented in your answer to (c)? Explain briefly.
 - e. How many **peaks** should be visible in the IR spectrum of ammonia? Briefly explain how you arrived at your answer.
 - f. How many **peaks** should be visible in the Raman spectrum of ammonia? Briefly explain how you arrived at your answer.