Problem Set 5 – Due by 5 p.m. Friday, Nov. 15, 2019

Please answer the following questions on a separate sheet (or sheets) of paper. Be sure to show all your work and include print-outs of any graphs you create.

1. The following reaction (called the "iodine clock reaction") is often performed in chemistry lab courses:

 $2 l^{-}(aq) + S_2O_8^{2-}(aq) \rightarrow l_2(aq) + 2 SO_4^{2-}(aq)$

Suppose that CHEM 108 students performed the series of experiments below, determining the initial rate for each.

[I ⁻] ₀ (M)	[S ₂ O ₈ ²⁻] ₀ (M)	Initial Rate (M/s)
0.080	0.040	12.5 × 10⁻ ⁶
0.040	0.040	6.25 × 10⁻ ⁶
0.080	0.020	6.25 × 10⁻ ⁶
0.032	0.040	5.00 × 10 ⁻⁶
0.060	0.030	7.00 × 10 ⁻⁶

- a. Express the reaction rate in terms of (i) the rate of disappearance of I⁻ and (ii) the rate of appearance of I₂.
- b. Use the experimental results provided to determine the rate law.
- c. Calculate the rate constant.
- 2. The decomposition of hydrogen peroxide (H₂O₂) was measured as a function of time, generating the following data:

Time (s)	[H ₂ O ₂] (M)
0	1.00
1.20 × 10 ²	0.91
3.00 × 10 ²	0.78
6.00 × 10 ²	0.59
1.200 × 10 ³	0.37
1.800 × 10 ³	0.22
2.400 × 10 ³	0.13
3.000 × 10 ³	0.082
3.600 × 10 ³	0.050

- a. Determine the order with respect to [H₂O₂] and write the rate law.
- b. Determine the rate constant.
- 3. A metastable form of technetium-99, ^{99m}Tc, is the most commonly used radioactive tracer in medical imaging. It decays according to first-order kinetics, with a half-life of 6.0 hours. How much time must elapse after injection before the amount of ^{99m}Tc in a patient's bloodstream drops to 1.0 % of its initial concentration?

- 4. For solid lead(II) iodide in equilibrium with its ions in aqueous solution, the equilibrium constant K_c (also called the solubility product constant, K_{sp}) has a value of 8.5 × 10⁻⁹ at 25 °C.
 - a. Please write a balanced equation representing this equilibrium and an expression for K_c.
 - b. Please calculate ΔG° for this reaction in kJ/mol using only the information provided here. In which direction is the reaction spontaneous under standard conditions?
 - c. Please calculate the equilibrium concentration of each ion in moles per liter.
- 5. The following reaction has an equilibrium constant $K_P = 85$ at a temperature of 553 K. Suppose that, at a certain point, the pressures of H₂ and I₂ are each 0.90 atm and that of HI is 5.25 atm.

- a. Is the reaction at equilibrium? (Show your work and/or explain your reasoning.)
- b. If not, what will the pressures of H_2 , I_2 and HI be when equilibrium is reached?