EXAM IV – November 25, 2019

Answers to Calculation-Based Problems

2. (16 pts) Sulfuric acid, H₂SO₄, is arguably the most commonly used chemical in the world, with myriad applications. Among them, you may know that it is the "battery acid" in most car batteries.

Suppose that a mechanic keeps a solution of lye (more formally known as sodium hydroxide, NaOH) on hand to neutralize any H_2SO_4 that happens to leak from used car batteries.

a. What is the pH of a 6.0 M solution of NaOH?

Answer: pH = 13.22

- 4. (18 pts) Radioactive iodine, ¹³¹I, is used to treat hyperthyroidism (overactive thyroid) by shrinking the thyroid gland. It decays according to first-order kinetics. $ln \frac{[A]_t}{[A]_0} = -kt$
 - b. The half-life of ¹³¹I is 8.021 days. Calculate the rate constant for its decay.

Answer: $k = 0.864 \text{ days}^{-1}$

c. How much time must pass after administration of ¹³¹I before its concentration has decayed to 5.0% of its initial value?

Answer: t = 35 days

5. (12 pts) The hemoglobin in our blood (abbreviated Hb) readily binds to carbon monoxide. (This is a key factor in CO poisoning, as the CO displaces oxygen.) The rate of this binding reaction was studied at 20 °C. [1 μ M = 1 × 10⁻⁶ M = 1 μ mol/L]

[Hb]₀ (μM)	[CO]₀ (μM)	Initial Rate (µM/s)
2.21	1.00	0.619
4.42	1.00	1.24
4.42	3.00	3.71

Hb + CO \rightarrow Hb—CO

b. Calculate the rate constant.

7. (17 pts) Uric acid (C₅H₄N₄O₃, $K_a = 1.29 \times 10^{-4}$) can collect in joints, giving rise to a medical condition known as gout. What is the pH of a 0.0650 M solution of uric acid? [**Hint:** Find the equilibrium concentration of H₃O⁺.]

 $C_5H_4N_4O_3(aq) + H_2O(l) \longrightarrow C_5H_3N_4O_3(aq) + H_3O^+(aq) \qquad K_a = 1.29 \times 10^{-4}$

Answer: pH = 2.548 (using quadratic formula)

OR

pH = 2.538 (using the shortcut, assuming x << 0.0650 M)