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Abstract

Background: Zinc supplements can treat or prevent enteric infections and diarrheal disease. Many articles on zinc
in bacteria, however, highlight the essential nature of this metal for bacterial growth and virulence, suggesting that
zinc should make infections worse, not better. To address this paradox, we tested whether zinc might have
protective effects on intestinal epithelium as well as on the pathogen.

Results: Using polarized monolayers of T84 cells we found that zinc protected against damage induced by
hydrogen peroxide, as measured by trans-epithelial electrical resistance. Zinc also reduced peroxide-induced
translocation of Shiga toxin (Stx) across T84 monolayers from the apical to basolateral side. Zinc was superior to
other divalent metals to (iron, manganese, and nickel) in protecting against peroxide-induced epithelial damage,
while copper also showed a protective effect.
The SOS bacterial stress response pathway is a powerful regulator of Stx production in STEC. We examined whether
zinc’s known inhibitory effects on Stx might be mediated by blocking the SOS response. Zinc reduced expression of
recA, a reliable marker of the SOS. Zinc was more potent and more efficacious than other metals tested in inhibiting
recA expression induced by hydrogen peroxide, xanthine oxidase, or the antibiotic ciprofloxacin. The close
correlation between zinc’s effects on recA/SOS and on Stx suggested that inhibition of the SOS response is one
mechanism by which zinc protects against STEC infection.

Conclusions: Zinc’s ability to protect against enteric bacterial pathogens may be the result of its combined effects on
host tissues as well as inhibition of virulence in some pathogens. Research focused solely on the effects of zinc on
pathogenic microbes may give an incomplete picture by failing to account for protective effects of zinc on host epithelia.

Keywords: Enterohemorrhagic E. coli, O157:H7, Hemolytic-uremic syndrome, SOS response, Diarrheal diseases, Xanthine
oxidase, Manganese, Copper
Background
Zinc has been tested for its ability to treat and prevent
diarrheal diseases in many large field trials over a period
of over 4 decades [1-3] and has generally been found ef-
fective. Nevertheless, the protective mechanism of zinc
has remained elusive. For example, most of the articles on
zinc and enteric pathogens emphasize the essential nature
of this metal and imply that zinc would enhance enhance
the virulence of the pathogen [4,5] rather than help the
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host. It is often suggested that zinc acts via the immune
system [6], but actual studies on zinc and immune re-
sponses are more nuanced and show that zinc can impair
as well as enhance immune functions [7-10]. Instead of in-
voking zinc effects on immunity, we and others have shown
that zinc can have pathogen-specific protective effects
by acting directly on enteric bacteria including entero-
pathogenic E. coli (EPEC), Shiga-toxigenic E. coli (STEC),
and enteroaggregative E. coli (EAEC) [11-13]. Recently,
Mukhopadhyay and Linstedt reported that manganese
could block the intracellular trafficking of Shiga toxin 1
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(Stx1) and thus inhibit its ability to kill susceptible host
cells [14]. This prompted us to reexamine the effects of
zinc on host cells and to compare the effects of zinc with
that of other divalent metals, including manganese.
STEC includes older names and subsets including

enterohemorrhagic E. coli, EHEC, and Verotoxigenic E.
coli, VTEC. STEC is the main cause of episodic “E. coli
outbreaks” which are usually food-borne and often at-
tract a great deal of attention in the news media [15-17].
As the name implies, these strains produce potent cyto-
toxins such as Stx1 or Stx2, or both. Absorption of Stx
from the gastrointestinal tract can lead to severe extra-
intestinal effects, including kidney failure, brain dam-
age, and death. Antibiotics often make STEC infections
worse by virtue of their ability to induce Stx production
[18,19] and so are considered contraindicated in STEC
infection. The severe sequelae of STEC infection has
prompted many to seek additional treatments, sometimes
by heroic measures that might rescue patients from the
throes of full-blown disease, such as hemolytic-uremic
syndrome (HUS) [20,21]. In contrast, we thought it would
make more sense to intervene earlier in the course of
STEC infection and prevent STEC infections from pro-
gressing to severe disease. Safe and inexpensive measures
such as supplementation with oral zinc or other metals
therefore seemed attractive as options. In contrast to our
previous studies emphasizing the effects of zinc and other
metals on the pathogenic bacteria, in this study we began
by comparing zinc and other metals for protective effects
on host epithelial cells, using T84 colonic cells grown as
polarized monolayers. We found that zinc increased the
trans-epithelial electrical resistance (TER) of the T84
cell monolayers; TER serves as a measure of epithelial
integrity and of the barrier function provided by tight
junctions. Zinc also protected monolayers from dam-
age induced by hydrogen peroxide, an oxidant host
defense that is released in response to EPEC and STEC
infection [22,23]. We also examined if zinc and other
metals had any effect of the translocation of Stx across
T84 monolayers and found that it reduced toxin trans-
location as well. We also reexamined the ability of zinc
to inhibit Stx production from STEC bacteria and cor-
related it with zinc’s ability to block the onset of the
SOS bacterial stress response, as measured by recA ex-
pression, an early and quantifiable marker of the SOS
response. While other metals occasionally mimicked
zinc’s effects in one particular attribute or another, zinc
was unique in its ability to simultaneously exert pro-
tective effects on host tissues while also inhibiting
multiple bacterial pathways associated with STEC viru-
lence such as the recA/SOS response, EHEC secreted
proteins (Esps), the adhesins intimin and Tir, and Stx
production. No other metal tested showed the same
broad combination of beneficial effects as did zinc.
Methods
Bacterial strains used
Bacterial strains used are listed in Table 1. Bacteria were
grown overnight in LB broth at 37°C with 300 rpm shak-
ing, then subcultured into the medium for the expression
studies, usually DMEM medium or minimal medium. In
this report, when bacteria were subcultured in “DMEM”
this refers to DMEM/F12 medium supplemented with
18 mM NaHCO3 and 25 mM HEPES, pH 7.4, but without
serum or antibiotics.

Assays using T84 cells grown in polarized monolayers in
Transwell inserts
T84 cells were grown to confluency over 7 to 10 days on
12 mm Transwell inserts (Corning Life Sciences, Lowell,
MA) in T84 medium with 8% fetal bovine serum and anti-
biotics as described. The Transwells were of 0.4 μm pore
size polycarbonate plastic, and were not coated with colla-
gen or other proteins. Trans-epithelial electrical resistance
(TER) was measured using an Evom2 meter (World Preci-
sion Instruments, Tampa, FL) and the STX2 chopstick
electrode. (It is mere coincidence that the electrode has a
name similar to the toxin we were studying.) We adjusted
the concentration of hydrogen peroxide used to damage
the monolayers based on the TER at the start of the experi-
ment: 2 mM H2O2 was used for monolayers with resis-
tances of 1000–1500 Ω, and 3 mM H2O2 for monolayers
with resistances above 1500 Ω. TER values are reported in
ohms (Ω). To obtain values in Ω · cm2, one would multiply
by the area (1.12 cm2). For monolayer experiments, we re-
moved serum-containing medium and performed the ex-
periments in serum-free medium. Delta TER (ΔTER) is
defined as the TERfinal – TERinitial; TER and Stx transloca-
tion measurements were done in quadruplicate wells and
are shown as means ± SD.

Stx toxin translocation assay
We measured translocation of Stx2 from the upper cham-
ber to lower chamber in T84 cells grown in Transwell in-
serts (apical-to-basolateral) as described by Acheson et al.
[28]. T84 cells are insensitive to the toxic effects of Stx, at
least in part due to low or absent expression of the Gb3
glycolipid receptors for Stx1 and Stx2; intestinal epithelia
in humans and other mammals also show nil expression
of Gb3. As a source of Stx2 we used crude supernatants of
STEC strain Popeye-1, subjected to sterile filtration, and
containing 1 to 1.5 μg/mL of Stx2. Crude supernatant was
used because other soluble factors present in STEC super-
natants, including EHEC secreted protein P (EspP) in-
crease the ability of Stx to translocate across monolayers
by the trans-cellular route [29,30]. This crude supernatant
would be expected to contain Stx2c as well as Stx2. Stx su-
pernatants were diluted to a final concentration of Stx2 in
the upper chamber of between 50,000 to 100,000 pg/mL



Table 1 Bacterial strains used

Strain name Pathotype/serotype Comment Reference

Popeye-1 STEC; O157:H7 stx2; stx2c United States 2006
spinach-associated
outbreak strain.

[12]

EDL933 STEC; O157:H7 stx1; stx2 [23]

TSA14 STEC O126:H11 stx1 [23]

JLM281 recA-lacZ reporter strain derived from
laboratory strain MC4100

recA is used as a measure of the SOS
response to DNA damage in E. coli

[24]

JLM165 LEE4-lacZ reporter strain LEE4 encodes the EPEC and EHEC
secreted proteins (Esps)

[25]

KMTIR3 LEE5-lacZ reporter LEE5 encodes Tir and intimin [26]

mCAMP bla-lacZ reporter β-lactamase [25]

MG1655 Used as susceptible host strain for
bacteriophage plaque assays.

[27]
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in various experiments done over several months. Stx2
addition was delayed until 2 h after the oxidant in order to
avoid denaturing the Stx by oxidation. Medium from the
lower chambers was collected at various times and Stx2
measured by enzyme immunoassay (EIA) as described
[12] using the Premier EHEC toxin EIA kit (Meridian Bio-
sciences, Cincinnati, OH). Purified Shiga toxin 2 toxoid
was a kind gift of Dr. Alison Weiss, Univ. of Cincinnati,
and was used to create standard curves to allow better
quantitation. To provide context, in monolayers damaged
with 3 mM H2O2, the amount of Stx2 translocated across
the monolayer at 24 h averaged 7.0 ± 4.8% of the amount
originally added. Hypoxanthine + XO triggered a similar
amount of Stx2 translocation: 8.5 ± 3.0% at 24 h (mean ±
SD of 5 experiments).

Miller assay for expression of β-galactosidase in bacterial
reporter strains
Strain JLM281, the reporter strain containing the recA-lacZ
construct was used to measure recA expression in response
to inducing antibiotics, zinc and other metals. We used a
version of the Miller assay adapted to 96 well plates for
higher throughput [31]. However, we used 0.1% hexadecyl-
trimethylammonium bromide (HTA-Br) detergent alone,
without chloroform or sodium dodecyl sulfate (SDS), to
permeabilize the bacteria. The buffers used are described in
a Open WetWare website at http://openwetware.org/wiki/
Beta-Galactosidase_Assay_%28A_better_Miller%29.
Briefly, we subcultured strain JLM281 at a dilution of

1:100 from an overnight culture in DMEM into a 96 well
plate containing minimal medium, 150 μl per well, on a
Bioshake iQ thermal mixer (Quantifoil Instruments GmbH,
Jena, Germany) at 37°C with mixing at 1200 rpm. We used
DMEM for these expression experiments because induc-
tion of recA, LEE4, and LEE5 were higher in DMEM than
in LB broth. The 96 well plate was sealed with gas-
permeable plate sealing film to prevent evaporation during
the growth phase. At 4 h when the cultures reached an
OD600 in the 0.2 to 0.3 range, 20 μl of bacterial culture was
transferred to the wells of a a second 96 well plate contain-
ing 80 μl of permeabilization buffer and allowed to
permeabilize for at least 10 min at room temperature. The
β-galactosidase reaction was initiated by transferring 25 μl
of permeabilized bacteria into a third 96 well plate contain-
ing 150 μl of substrate solution with 1 g/L o-nitrophenyl-β-
galactoside (ONPG). The enzyme reaction plate was incu-
bated at 30°C for 30 min, and then A420 was measured on
the 96 well plate reader. We usually omitted the addition of
the Na2CO3 stop solution. Miller units were calculated
using the simplified equation:

1000� A420

OD600 � volumes sampled 0:02ml½ �ð Þ � reaction time inmin usually30½ �

Agar overlay assay for bacteriophage plaques by
modified spot assay
We used wild-type STEC strains as the source of bacterio-
phage for these experiments. STEC bacteria were subcul-
tured at a dilution of 1:100 into antibiotic-free DMEM
medium from an overnight culture. After 1 h of growth at
37°C with 300 rpm shaking, additions such as ciprofloxa-
cin or zinc were made and the tubes returned to the
shaker incubator for 5 h total. The STEC suspension was
clarified by centrifugation, then subjected to sterile filtra-
tion using syringe-tip filters. The STEC filtrate was diluted
1:10 in DMEM medium, then serial 2-fold dilutions were
made to yield dilutions of 1:20, 1: 40, 1: 80 and so on. The
recipient strain, E. coli MG1655, was subcultured at 1: 50
from overnight and grown in LB broth for 3 hours. Soft
LB agar was prepared using LB broth supplemented with
0.5% agar and 0.5 mM MgSO4. The soft agar was melted
by microwave heating, and kept warm at 45°C on a heater
block. The MG1655 culture was diluted 1: 10 into the soft
agar and 5 ml of the bacteria-containing agar was overlaid

http://openwetware.org/wiki/Beta-Galactosidase_Assay_%28A_better_Miller%29
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on top of the agar of regular LB agar plate and allowed to
solidify. Then 3 μl aliquots of the diluted STEC filtrates
were spotted on top of the agar overlay. Plaques were visu-
alized after 16 h of additional incubation at 37°C. Any faint
zone of clearing was counted as a plaque. The highest di-
lution of STEC filtrate that produced a plaque was re-
corded as the plaque titer.

Rabbit infection experiments
No new rabbit infection experiments were performed for
this study. We used photographs from the archives of our
previous animal experiments to create the illustration in
final figure. Nevertheless, all of our past and ongoing ani-
mal work has been scrutinized and approved by the ani-
mal care committee (IACUC) of the University at Buffalo.

Data analysis and statistics
Error bars shown on graphs and in Tables are standard de-
viations. Statistical signficance was tested by ANOVA using
the Tukey-Kramer post-test for multiple comparisons.

Results
We recently reported that the xanthine oxidase (XO) en-
zyme pathway is activated in response to EPEC and STEC
infection [23]. Infection with these pathogens triggers a re-
lease of nucleotides and nucleosides into the gut lumen,
and XO itself is also released into the lumen of the intes-
tine as a result of damage inflicted by these pathogens. XO
catalyzes the conversion of hypoxanthine to xanthine and
xanthine to uric acid, with both steps creating one mol-
ecule of hydrogen peroxide. As previously reported by
Wagner for oxidant molecules generated from neutrophils
[22], XO-generated H2O2 increases the production of Stx
from STEC strains [23]. Since H2O2 is known to be able
to damage intestinal epithelia [32,33], we thought this
would be a relevant model to test whether zinc or other
metals could protect against oxidant damage, since zinc
has been reported to reported to help restore intestinal
barrier function following other insults [34]. We used T84
cells grown to confluency in polarized monolayers in
Transwell inserts as previously reported [28]. We mea-
sured trans-epithelial electrical resistance (TER), an index
of intestinal barrier function, as well as H2O2-induced
translocation of Stx2 from apical to basolateral chambers.
Figure 1 shows the effects of H2O2 on TER and Stx2

translocation. H2O2 damages tight junctions and increases
permeability via the paracellular pathway [35]. Figure 1A
shows that H2O2 has concentration-dependent and time-
dependent effects on TER in the T84 monolayers. 1 mM
H2O2 paradoxically increased TER slightly, but 2 mM
H2O2 caused a moderate drop in TER. H2O2 at 3 mM and
above damaged the monolayers severely, with TER falling
to ~100 Ω, which is equivalent to that of the Transwell fil-
ters alone without any cells. Figure 1B shows that H2O2
also had a concentration dependent effect on Stx2 trans-
location, with Stx2 translocation detectable at H2O2 con-
centrations of 3 mM or higher. The inset in Figure 1B
shows that H2O2 was also able to trigger a flux of
fluorescein-labeled dextran-4000 across the monolayer, and
that the monolayer damage could be prevented by the
addition of catalase. Figure 1C shows that zinc could in-
crease the TER in T84 cells not subjected to hydrogen per-
oxide or any other noxious stimulus, and Figure 1D shows
that zinc could protect against the drop in TER induced by
treatment with 2% dimethylsulfoxide (DMSO), at least at
intermediate concentrations. Zinc acetate seemed to reduce
the drop in TER (Δ TER) induced by 3 mM H2O2, although
this protective effect did not reach statistical significance
(Figure 1E). Figure 1F shows, however, that intermediate
concentrations of zinc (0.1 to 0.3 mM) did significantly re-
duce Stx2 translocation across the T84 monolayers. At
zinc concentrations of 0.4 mM and higher, however, the
protective effect was lost, resulting in a U-shaped curve in
Figure 1F (data not shown for concentrations greater than
0.4 mM). The U shape in Figure 1F seemed to mirror the
arch shape of the curves in Figure 1D and E, and sug-
gested that zinc might have interesting protective effects
against insults to the intestinal epithelium.
In Figure 1 the hydrogen peroxide was added once at

fairly high concentrations, but in an actual infection the
hydrogen peroxide (and other oxidants, such as super-
oxide and sodium hypochlorite) is generated gradually
from enzymatic conversion of substrates over many hours.
Therefore we repeated experiments similar to those shown
in Figure 1, but instead using H2O2 we added hypoxan-
thine plus XO. Figure 2A shows that, in the presence of
XO, hypoxanthine has a concentration-dependent effect
on Δ TER. Adding 100 μM hypoxanthine actually in-
creased TER compared to vehicle control, with higher
concentrations of hypoxanthine inducing a progressive fall
in TER. The increase in TER observed in Figure 2A at
100 μM hypoxanthine was reminiscent of the small in-
crease in TER seen with 1 mM H2O2 in Figure 1A (top
curve). Figure 2, Panels B, shows that the effect of zinc on
T84 cell monolayers was additive with the known protect-
ive effects of 5 mM sodium butyrate on colon cell mono-
layers [36]. The concentration of butyrate we used is well
within the concentrations known to occur in the lumen of
the lower gastrointestinal tract [37]. Figure 2C shows that
zinc at 0.1 to 0.5 mM significantly protected cells from the
drop in TER inflicted by XO+ 400 μM hypoxanthine.
Likewise, Figure 2D shows that 0.1 to 0.3 mM zinc, but
not 0.4 mM zinc, reduced Stx2 translocation triggered by
XO+ 400 µM hypoxanthine. Thus, while Figure 2C did
not show the arch shape seen in Figure 1C, Figure 2D
does have the “U” shape similar to that seen in Figure 1D
with hydrogen peroxide as the injuring oxidant. In mono-
layers treated with hypoxanthine + XO, the amount of
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Stx2 that translocated across the monolayer in 24 h was
8.5 ± 3.0% (mean ± SD of 5 experiments) of the total
amount added to the upper chamber. Figures 1 and 2
showed that zinc acetate could protect against oxidant-
induced drop in TER, a measure of intestinal barrier
function, and inhibit the translocation of Stx2 across
T84 cell monolayers as well.
In Figure 3 we examined the effects of other metals on

TER and Stx2 translocation. We focused on the transi-
tion metals nearest to zinc in atomic number, including
manganese, iron, nickel, and copper. Figure 3A shows
the effects of two of these metals on TER, while Panels
B-D show the effects on Stx2 translocation. Figure 3A
shows that in contrast to zinc (top curve), FeSO4 and
MnCl2 had no protective effect against the drop in TER
triggered by XO+ hypoxanthine. Copper (as CuSO4) also
failed to protect against the drop in TER (data not shown).
When Stx2 translocation was measured, FeSO4 seemed to
slightly enhance Stx2 translocation triggered by H2O2

(Figure 3B), but this did not reach statistical significance.
Nevertheless, iron has been shown to be able to potentiate
oxidant-induced damage, and this has often been attrib-
uted to iron’s ability to catalyze the Fenton reaction, in
which H2O2 is split into 2 molecules of hydroxyl radical
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Figure 3 Effect of metals other than zinc on oxidant-induced changes in TER and on Stx2 translocation. As in Figure 2, the “standard”
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(HO•). Figure 3C shows that manganese (as MnCl2) failed
to protect against Stx22 translocation, and at 0.5 mM
manganese significantly increased the amount of Stx2
crossing the monolayers. Notably, 0.5 mM was the effect-
ive concentration of manganese used by Mukhopadhyay
and Linstedt [14] in their study of Stx1 trafficking in HeLa
cells. Figure 3D shows that CuSO4, like zinc, significantly
reduced Stx2 translocation. This was a surprise because of
the lack of protection by CuSO4 on TER. Nickel chloride
also had no protective effect on TER and none on Stx2
translocation at 0.1 to 0.5 mM (data not shown).
To summarize Figures 1, 2 and 3, zinc increased the TER
in undamaged cells, and protected intestinal monolayers
against the drop in TER induced by DMSO, by hydrogen
peroxide, and that induced by XO plus hypoxanthine. Zinc
also protected against oxidant-induced translocation of
Stx2 across the monolayers at 0.1 to 0.3 mM concentra-
tion. These protective effects of zinc are attributable to ac-
tions of zinc on the host tissues, not on bacteria. None of
the four other metals tested (iron, manganese, copper, or
nickel) protected against oxidant-induced decrease in
TER, but copper was still able to reduce Stx2 translocation
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across monolayers (Figure 3D). Our results did not sup-
port the idea, advanced by Mukhopadhyay and Linstedt,
that manganese was the metal with the greatest promise
for protection against STEC infection in the clinical set-
ting [14]. Zinc still seemed to be a candidate for such stud-
ies, but to address this more fully we compared zinc and
other metals for their ability to block bacterial signaling
and stress-response pathways associated with virulence.
Stx production and release in STEC bacteria is strongly

regulated by the SOS stress response system in E. coli
[18,38]. In contrast, Stx production is quite insensitive to
commonly mentioned signaling pathways such as quorum
sensing, and to transcription factors such as the LEE-
encoded regulator (Ler) and Plasmid-encoded regulator
(Per) [25,39-41]. This is not surprising since stx1 and stx2
are encoded on phages similar to phage lambda, and these
phage genes are strongly activated by the DNA damage
triggered by certain antibiotics [18], hydrogen peroxide
[22,42], or ultraviolet light. An early, reliable, and quantifi-
able marker of the SOS response is the expression of recA
[43,44]. We hypothesized that zinc’s ability to inhibit Stx
production arises from its ability to inhibit the SOS re-
sponse and recA. To test this, we measured recA expres-
sion using a recA-lacZ reporter gene construct using the
Miller assay method and compared those results with
metals ability to inhibit Stx production.
Figure 4A shows that zinc inhibits ciprofloxacin-induced

Stx2 production strongly and in a dose-dependent manner.
In contrast, MnCl2 had no such ability to inhibit either
ciprofloxacin-induced Stx2 production (Figure 4B) or basal
(non-antibiotic treated) Stx release [12]. Figure 4C shows
that recA expression increased in reporter strain JLM281
when hypoxanthine is added in the presence of the en-
zyme XO, but not in the absence of XO. Hydrogen perox-
ide itself showed a recA activation curve with a similar
shape (Figure 4D). Zinc acetate inhibited ciprofloxacin-
induced recA expression (Figure 4E) as well as hydrogen-
peroxide induced recA expression (data not shown). Zinc
acetate was more efficacious and more potent in inhibition
of ciprofloxacin-induced recA expression that MnCl2 or
NiCl2 (Figure 4F) and more than FeSO4, CuSO4, or gal-
lium nitrate (Figure 4G). Gallium was tested because of its
position next to zinc on the Periodic Table and because
others had reported it had anti-virulence activity [45].
Figure 4H shows that zinc acetate was more potent than
zinc oxide nanoparticles, CoCl2, or bismuth subcitrate in
inhibition of recA induced by ciprofloxacin. Bismuth was
tested because of its long use as a treatment for infectious
diarrhea [46,47], and zinc oxide nanoparticles were re-
ported to have activity against Campylobacter jejuni [48].
In summary, zinc acetate was more potent and more effect-
ive in inhibiting ciprofloxacin-induced recA than any other
metal shown in Figure 4. Zinc also blocked recA induced
by mitomycin C (data not shown). As controls, zinc did not
block the induction of other genes, including a β-lacta-
mase-lacZ reporter gene (see final figure below), or the
ability of isopropyl-thio-galactose (IPTG) to induce beta-
galactosidase in wild-type E. coli strains (data not shown).
We did not test metals such as cadmium, mercury, or lead,
because we are interested in the translational use of these
findings and felt those metals were too toxic to be consid-
ered for use in humans or animals.
Since our finding that zinc-mediated inhibition of recA

expression had not been previously reported, we tested
whether zinc was actually blocking the entire bacterial
SOS response, or merely preventing recA expression in an
artefactual way. A reliable “downstream” marker of the
SOS stress response in E. coli is a marked elongation of
the bacterial cells, sometimes called filamentation, which
is due to inhibition of the fission ring formed by FtsZ. We
tested whether zinc inhibited antibiotic-induced elong-
ation of bacteria. Additional file 1: Figure S1 shows that
zinc reversed ciprofloxacin-induced bacterial elongation in
EPEC E2348/69 and in STEC strain Popeye-1, as well as
mitomycin C-induced elongation in Popeye-1. In contrast
to zinc, manganese and nickel did not have any effect on
antibiotic-induced elongation (Additional file 1: Figure
S1B and 1C). Zinc also blocked the production of infec-
tious bacteriophage from STEC strains Popeye-1, EDL933,
and TSA14, as assessed by phage plaque assays on labora-
tory E. coli strain MG1655 (Figure 5 and Table 2). There-
fore we conclude that zinc blocks all the core features of
the SOS response, and not merely recA induction.
Stx is an important virulence factor in STEC, but it is

not the only one. Therefore, we also tested whether op-
erons in the locus for enterocyte effacement (LEE) were
activated by oxidant stress, and if so, whether, they were
susceptible to inhibition by zinc. We used LEE4-lacZ and
LEE5-lacZ reporter strains; LEE4 encodes the EPEC and
EHEC secreted proteins (Esps), and LEE5 encodes the crit-
ical adhesins Tir and intimin, and the CesT chaperone.
Figure 6 shows that, in the presence of XO, hypoxanthine
substrate does modestly activate expression of both LEE4
(Figure 6A) and LEE5 (Figure 6B). Figure 6C shows that
H2O2 also induced LEE5 expression in a manner similar to
that triggered hypoxanthine plus XO, and as previously
shown for ciprofloxacin [24]. Figure 6D shows that zinc
acetate inhibited LEE4 expression, but unfortunately man-
ganese chloride showed no such ability. Figure 6 shows first
that LEE operons may be up-regulated by oxidant stress,
and second that the virulence-inhibiting abilities of zinc ex-
tend to factors other than Stx including critical adhesins
and Type III secreted proteins encoded in the LEE. While
Figures 1, 2 and 3 focused on the protective effects of zinc
and other metals on intestinal cells, Figures 4, 5 and 6 ex-
tend our previous understanding of zinc’s direct effects on
bacteria [11,12], showing zinc’s ability to inhibit the SOS
response as measured by recA expression (Figure 4), a
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(See figure on previous page.)
Figure 4 Effects of zinc and other metals on Stx production from STEC, and on recA expression. Panels A and B, effect of metals on
production of Stx2 from STEC strain Popeye-1. In both panels, the results of 3 separate experiments are combined and expressed as a percent
compared to the amount of Stx2 in the presence of 4 ng/mL ciprofloxacin alone (mean ± SD). *significantly reduced compared to the no-zinc
control, by ANOVA. Panels C-H, expression of recA as measured in the Miller assay using reporter strain JLM281 (recA-lacZ). Panel C, effect of
hypoxanthine ± XO on recA expression. Despite the lack of asterisks, recA expression was significantly higher in the presence of XO than in its
absence for concentrations of hypoxanthine of 0.8 mM or higher. Panel D, H2O2 induction of recA expression in JLM281. Panel E, reversal of
ciprofloxacin-induced recA expression by zinc. Panels F-H, comparison of other metals on recA expression, with results normalized as a ratio to
that of the “plus ciprofloxacin, no metal” condition for each metal and concentration.
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property not matched by any other metal tested. The good
correlation between zinc’s inhibition of recA expression
(Figure 4), filamentation (Additional file 1: Figure S1),
phage production, and zinc’s inhibition of Stx toxin protein
(Figure 4A) and stx RNA [12] suggests that zinc’s ability to
block recA activation is an important part of the mechan-
ism of action of this metal in STEC and EPEC infection.

Discussion and conclusions
Our understanding of the roles of divalent metals as regu-
lators of bacterial pathogenesis has lagged behind that of
other molecules such as quorum sensing auto-inducers
and transcriptional regulators such as H-NS and Ler [49].
Most of the work on transporters and metabolism of zinc
and other metals has been done with non-pathogenic
A

C

Phage Titer 1:10

Phage
Titer 1:640

Figure 5 Effect of zinc on ciprofloxacin-induced bacteriophage productio
assay. STEC filtrates were prepared as described in Materials and Methods from
Panel A, sterile filtrate of TSA14 not treated with antibiotics or zinc, showing a p
zinc; no phage plaques are visible. Panel C, spot assay from TSA14 treated with
resulting from bacteria treated with ciprofloxacin and zinc, showing a 8-fold red
laboratory strains of E. coli [50-52], which makes the re-
sults difficult to extrapolate to strains which are profes-
sional intestinal or extra-intestinal pathogens. For
example, STEC expresses several different metal uptake
and zinc export genes not present in laboratory E. coli
strains [4,5,53,54] so STEC’s response to bioactive metals
often differs from non-pathogenic E. coli. In addition, the
specialized Type III secretion system (and Type VI secre-
tion system in EAEC) used to deliver effectors into host
cells may serve as an “Achilles’ heel” in these pathotypes
because the membrane secretion machinery causes them
to become hypersusceptible to some stressful stimuli [55]
such as the envelope stress response [27,56]. Furthermore,
many of the reports on zinc in enteric bacteria only focus
on the essential nature of this metal for the pathogen
B

D

Phage Titer < 1:10

Phage Titer 1: 80

n from STEC bacteria, as assessed by a semi-quantitative “spot”
strain TSA14 and diluted to 1:10, 1:20, 1:40, 1: 80, and so on to 1:2560.
hage titer of 1: 10. Panel B, STEC filtrate from bacteria treated with 0.4 mM
4 ng/mL ciprofloxacin, showing a titer of 1:640. Panel D, phage titer
uction in phage plaque titer compared to ciprofloxacin alone.



Table 2 Effect of zinc on the bacteriophage yield from STEC bacteria by phage plaque assay on E. coli MG1655 as host strain

Experiment number Donor/source strain
for bacteriophage

Growth condition
(in DMEM Medium)

Bacterio-phage titer Fold reduction by zinc

Expt. 1 TSA14; O26:H11, Stx1+; harbors phage H19B control, no additives 1:10

+ 0.4 mM Zn no plaques, < 1:10 > 2-fold decrease

+ 4 ng/ml cipro 1:640

+ 4 cipro + 0.4 mM Zn 1:80 8-fold decrease

Expt. 2 TSA14; O26:H11 control, no additives 1:20

+ 0.6 mM Zn no plaques > 2-fold decrease

+ 8 ng/ml cipro 1:640

+ 8 cipro + 0.4 mM Zn 1:160 4-fold decrease

+ 8 cipro + 0.6 mM Zn 1:80 8-fold decrease

Expt. 3 EDL933; O157:H7; Stx1+, Stx2+; control 1:80

+ 0.6 mM Zn 1:40 2-fold decrease

Harbors phages H19B and 933 W + 10 ng/ml cipro > 1:5120

+ 10 cipro + 0.6 mM Zn 1:320 ≥ 16-fold decrease

Expt. 4 EDL933 control 1:80

+ 0.6 mM Zn 1:20 4-fold decrease

+ 10 ng/ml cipro 1:640

+ 10 cipro + 0.6 mM Zn 1:160 4-fold decrease

All source strains were grown for 5 hours, 4 hours after addition of ciprofloxacin and/or zinc.
Zn, zinc acetate; cipro, ciprofloxacin, usually added at ~ 1/3 of the MIC.
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[4,57], without consideration of how zinc might also bene-
fit the host. In addition, many reports do not distinguish
between the growth-and-fitness promoting effects of zinc
on pathogens at the low concentrations usually present (1
to 50 μM) versus the higher, stress-inducing concentra-
tions of zinc that can occur during zinc supplementation
(0.1 to 0.4 mM). In general, it appears that host cells are
better able to survive–- and thrive–- in the presence of
these higher zinc concentrations that are deleterious to E.
coli and other enteric bacteria ([58,59], and Figures 1, 2 and
3 of this study). Moreover, studies that have actually tested
zinc for infection outcomes using cultured cell models or
animal models have generally shown that zinc benefits the
host more than the pathogen, resulting in a reduction in se-
verity of disease [11,13,48,60]. Indeed, Botella et al. recently
showed that zinc is mobilized in macrophages and concen-
trated in phagosomes as part of the host defense against
Mycobacterium tuberculosis [61]. This is relevant to the gut
because zinc is also concentrated in the secretory granules
of Paneth cells [62,63], specialized cells in the intestinal
crypts involved in antimicrobial defenses.
The discovery that zinc specifically inhibits virulence fac-

tor expression by some pathogens and not others has led
us to emphasize that zinc’s effects may be pathogen-
specific [64]. We may have to temper that emphasis, how-
ever, because Figures 1 and 2 of this study show zinc may
strengthen the intestinal epithelial barrier against oxidant
damage and this might extend zinc’s protection to organ-
isms that are not specifically affected by zinc. Zinc may
have mild protective effects against multiple diarrheal path-
ogens via its effects on enterocytes, and then also have add-
itional protective activity against specific pathogens such as
EPEC, STEC, EAEC, and Campylobacter.
Mukhopadhyay and Linstedt reported that manganese

was able to block the intracellular trafficking of Stx1
through the Golgi apparatus of Stx-susceptible HeLa cells
engineered to overexpress the glycolipid Gb3 [14]; by doing
so MnCl2 appeared to block the toxic effects of Stx1. Hope
that manganese could be used as a treatment for STEC in-
fection diminished, however, when Gaston et al. and add-
itional work by Mukhopadhyay et al. showed that the
protective effects of manganese did not extend to Stx2
[65,66]. Gaston and colleagues also showed that manganese
was more toxic, both in cultured cells and in mice, than
was reported by Mukhopadhyay and Linstedt. Our results
show that manganese, unlike zinc, shows no protective ef-
fects on epithelial barrier function (measured as TER) or on
Stx2 translocation across intestinal monolayers (Figure 3).
Manganese did not inhibit ciprofloxacin-stimulated Stx2
production from STEC bacteria, unlike zinc (Figure 3A and
B) and copper [12], and did not have any effect on recA ex-
pression (Figure 4F) or the SOS- induced bacterial elong-
ation response (Additional file 1: Figure S1). Manganese
has been shown to up-regulate expression of the Esps in
STEC [67] and to increase basal Stx toxin production [12],
so manganese has real potential to cause more harm than
good in STEC infection. In addition, the neurotoxicity of
manganese [68], which is worse in children and young
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Figure 6 Effect of zinc and other metals on expression of LEE operons as measured in reporter strains. Reporter strains JLM165 (for LEE4,
encoding the Esps) KMTIR3 (for LEE5, encoding Tir and intimin) and mCAMP (for beta-lactamase) were used to measure gene expression using the
Miller assay. Panels A and B, expression of LEE4 and LEE5 were significantly increased in dose-dependent fashion by hypoxanthine in the presence of
XO, compared to without added XO. Panel C, LEE5 expression was modestly but significantly increased in response to H2O2. Panel D, zinc acetate,
but not MnCl2, inhibited induced LEE4 expression. *significant compared to “plus cipro, no-metal” condition. Panel E, lack of effect of zinc on
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animals, could exacerbate the Stx-induced encephalopathy
that can accompany severe cases of STEC infection. Based
on the literature mentioned and our results here, it appears
that zinc is more likely to have therapeutic effects against
STEC than manganese.
Copper also appears to have the ability to inhibit Stx pro-

duction in an recA-independent fashion (Figure 4G and
Ref. [12]), which is plausible given that recA-independent
pathways are known to regulate Stx [69]. Copper, like zinc,
also was able to block Stx2 translocation across intestinal
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of Stx, while we believe that it may be more helpful to
consider multiple steps in the natural history of STEC in-
fection where interventions might help (Figure 7). Figure 7
and Additional file 2: Table S1 show that there are at least
three separate phases at which zinc, other metals, or oral
drugs might affect STEC after the pathogen enters the
body. In the first phase, in the intestinal lumen, metals or
other drugs might be able to prevent the expression of
adhesins, virulence factors, and Stx (Figure 7, top portion).
If the treatment was delayed, STEC infection was estab-
lished, and Stx was produced, zinc or other interventions
might still be able to reduce the amount of Stx which
crosses the intestinal barrier (Figure 7, Phase 2). Previous
literature on oxidant-mediated damage to intestinal epithe-
lium has shown that tight junctions are the target of hydro-
gen peroxide [35,70,71] as well as the damage induced by
nutrient deprivation [34,72]. Tight junctions are known to
be regulated by extracellular divalent metals, especially cal-
cium and zinc [34,73-77]. Based on previous research,
therefore, we believe the effect of zinc on Stx translocation
seen in Figures 1 and 2, and in Phase 2 of Figure 7, is likely
due do its protective effect on the paracellular pathway ra-
ther than the transcellular/macropinocytosis pathway for
Stx translocation that has also been well described [29,30].
Additional file 2: Table S1 summarizes the effects of zinc

and four other metals in STEC and EPEC infection, based
on results reported in this study as well as previous work
by other investigators and our own laboratory. As can be
seen from Additional file 2: Table S1, no other metal quite
matches zinc in the wide number of different beneficial ef-
fects it exerts on host cells and inhibitory effects it exerts
on the pathogen, although copper also shows some benefi-
cial effects. In contrast, manganese, iron, and nickel all have
the potential to worsen one or more aspects of STEC’s in-
teractions with host cell (Additional file 2: Table S1).
EPEC adherence to host intestinal cells is heaviest in

the ileum and cecum, and STEC adheres most strongly
in the cecum and large intestine. Therefore, drugs or
metals with limited absorption in the upper gastrointes-
tinal tract would be ideal candidates for intervening at
Phases 1 or 2 of Figure 7, because they would have to at-
tain sufficient concentrations in the lumen of the distal
gut; zinc salts fall into this category [12].
In the 3rd phase of Figure 7, Stx which has crossed

the epithelial barrier binds to and begins to kill suscep-
tible host cells, especially endothelial cells. Figure 7, lower
portion, shows a higher power view of an intestinal blood
vessel which has been affected by Stx2, showing adherence
of polymorphonuclear leukocytes on the lumen of the
endothelium (green arrows), as well as leukocytes which
have been recruited into the wall of the vessel itself (blue
arrow, showing a true vasculitis). When a similar process
occurs in blood vessels elsewhere severe extra-intestinal
complications can ensue. It appears that more research
will be needed before we can declare we have drugs cap-
able of blocking the 3rd Phase of Stx action [14,65], and
Additional file 2: Table S1.
Figure 7 illustrates possible points at which metals might

act after STEC enters the intestinal tract of the host.
Metals which prove too toxic to use in vivo in humans
might still find use, however, in the “pre-ingestion” phase
of STEC, i.e., in agricultural practices, during germination
of sprouts, or during food processing to limit STEC adher-
ence to fresh foods or block virulence. Indeed, copper has
already attracted attention for its antimicrobial properties
in this regard [78,79]. Divalent metals deserve additional
research attention as inhibitors of bacterial virulence and
enhancers of host defenses.

Additional files

Additional file 1: Figure S1. Ability of zinc to block the bacterial
elongation (filamentation) response that ccompanies the SOS response.
Panel A, Elongation response in STEC strain Popeye-1. Popeye-1 was
subcultured at a dilution of 1:100 from an overnight culture in LB into
DMEM medium and grown at 37° with 300 rpm shaking. After 1.5 h,
ciprofloxacin was added to a final concentration of 4 ng/mL and incubation
was continued for an additional 1.5 h. Bacteria were stained by mixing with
an equal volume of 0.2% acridine orange in ethanol for 10 min, then the
bacteria were washed twice by centrifugation (at 500 g for 10 min) and
resuspension in 250 μl of water to remove excess acridine orange. The
stained bacteria were spotted on glass microscope slides, allowed to
dry, then examined by fluorescence microscopy under oil at 1000 X
magnification. Panel B, effect of metals on ciprofloxacin-induced
bacterial length in EPEC strain E2348/69. EPEC E2348/69 was grown in
the absence or presence of 0.1 μg/mL ciprofloxacin ± various metals
as shown. Bacteria were stained with acridine orange as described for
Panel A, then photographed using a Retiga digital camera. Digital
images were captured or converted to black-and-white, then subjected to
image analysis using ImageJ, free image analysis software developed at the
NIH. The version we used is called Fiji (ImageJ for MacIntosh, version 1.47n).
Detailed instructions on how to open and process the files are
available from the author at jcrane@buffalo.edu. Bacterial lengths were
determined for each condition and expressed as a ratio compared to
the no- ciprofloxacin, no-metal control bacteria. Panel C, effect of metals
on bacterial elongation in STEC strain Popeye-1, using the same
methods described for Panel B. Panel D, effect of zinc on mitomycin
C-induced bacterial elongation. In Panel D the actual bacterial length is
shown (in micrometers) using 2 micrometer size beads for calibration.

Additional file 2: Table S1. Effects of Biometals at Multiple Phases of
STEC and EPEC Pathogenesis.
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