Cheptur 6. $4,5,6,8,9,10,11,16,23$
(1) The subshare was bould by the enfyme which, ir tym, stubibized the en ry ure
from thuni drabretion
(5) a) $145-270=\frac{125 \text { aind avids } \times \frac{5.4 A^{\circ}}{3.6 \text { aminacids }}}{187.50^{\circ}}$

$$
=187.5 A
$$

b) The thee dinusionl stribue of the protien planes the two vesidues in sudh prafinios
(6) You could masue the lavease mi the absorbane $\frac{\text { ot a sample containioy: }}{\text { WADH }}$

Pquavite
Lactate Delyphognase
Bath
As the entyue catelyzes the newotian, NADA cill be convated to NAX ${ }^{*}$. This would be appuat by the lewase in a bsorbme of 340 nm . If you mide a stadud cane and deturined thy molar pxtinction coptfiereat of NADH and then use Beers law to guntitet how murh NADA was usel per hut tine.
(8)

$$
\begin{aligned}
& k_{\text {cat }}=30.0 \mathrm{sec}^{-1} \\
& k_{\text {w }}=0.005 \mathrm{~m}
\end{aligned}
$$

a) What is [S] wher $V_{0}=0.25 \mathrm{Vm}$

$$
\begin{aligned}
& V_{0}=\frac{U_{m}[s]}{V_{\text {act }}+[s]} \\
& 0.25 \mathrm{Vm}=\frac{U_{m}[s)}{k_{m}+[s]} \\
& 0.25 \mathrm{Vm}\left(\mathrm{~K}_{\mathrm{m}}+[\mathrm{S}]\right)=\mathrm{Vmm}_{\mathrm{m}}[\mathrm{~S}] \\
& \frac{0.25 \mathrm{Vm} \mathrm{~K}_{m}}{\mathrm{~V}_{m}}+\frac{0.25 \mathrm{~V}_{m}[\mathrm{~S}]}{\mathrm{V}_{m}}=\frac{\mathrm{Vm}[\mathrm{~S}]}{\mathrm{Vm}_{m}} \\
& 0.25 \mathrm{~km}+0.25[5] \text { [} \mathrm{s}] \\
& 0.25 \mathrm{~km} 20.75[\mathrm{~s}] \\
& {[s]=\frac{0.25)(0.005 \mathrm{M})}{25}} \\
& {[\mathrm{~s}] \mathrm{r} 1.667 \times 10^{-3} \mathrm{~m}} \\
& \text { b) }[s]=\frac{1}{2} \mathrm{~km}>0.5 \mathrm{~km} \\
& \text { (s) } 2 \mathrm{Km} \\
& {[5]=\text { cokn }} \\
& V_{0}=\frac{V_{m}(0.5 \mathrm{~km})}{\mathrm{K}_{m}+0.5 \mathrm{~km}} \quad V_{0} \tau V_{m}(2 \mathrm{~km}) \quad V_{0} \varepsilon \frac{V_{m}(10 \mathrm{~km})}{V_{m}+2 \mathrm{~K}_{m}} \\
& V_{0}=\frac{U_{m}(0.5 \mathrm{~km})}{1.5 \mathrm{~km}} \quad \frac{V_{0}}{V_{m}} 0.667 \\
& \frac{v_{u}}{v_{n}}=0.91
\end{aligned}
$$

c) Sane V_{m} but dithat $\mathrm{Kmm}_{\mathrm{m}}$ frov Substude, X Enspan A : $K_{m}=2,0, m \quad$ Emapar $B: K_{m}=0.5 \mu \mathrm{M}$

The jruph shows the rate of formatian of praluat 4 vercis tive. The highen the slope in the tinean portion of the curve it cerly fimes, the guath the virinal actuity.
The ensyom withy the lower Km for substate X will hame Nighar activity ? Lim. Tre ved plot repuesuts a ligh mitial activity. The vel plot is ensyme B.
(4) a)
a) $\left[E_{T}\right]=4 \mathrm{~nm} \quad V_{m}=1.6 \mathrm{~mm} / \mathrm{sec}$
$K_{\text {cat }}=V_{m} \frac{1.6 \times 10^{3} \mathrm{~nm} \cdot \mathrm{sec}^{-1}}{\left[E_{1}\right]^{2}}+400 \mathrm{sec}^{-1}$

$$
K_{n} \sum 10 \mu m
$$

$$
\begin{aligned}
& \text { b) }[E]=\ln M,[S]=30, \mathrm{~m}, \mathrm{U}_{2}=300 \mathrm{nM} / \mathrm{sec} \\
& \begin{array}{ll}
K_{\text {cat }}=V_{m} /[E 7] \\
\left.V_{m 2}\left(K_{\text {cat }}\right)([E]]\right) & V_{0}=\frac{V_{m}[S]}{V_{m}+[\beta]}
\end{array} \\
& \begin{array}{ll}
V_{m}=(0.001 \mu m)\left(400 \sec ^{-1}\right) \\
V_{m}=0.4 \mu \mathrm{~m} / \mathrm{sec}
\end{array}
\end{aligned}
$$

c)

$$
\begin{array}{ll}
V_{m}=4.8 \mathrm{pm} \cdot \mathrm{sec}^{-1} & \text { in expt. } A \\
K_{m}=15 \mathrm{~mm} & \text { in expt } B
\end{array}
$$

Calcalute α and α^{\prime}
$1^{\text {st }}$ off: Since loth chuged, the inki bitur is a mixed mhibitur?

The V_{m} elunevs by a factur of $1 / \alpha^{\prime}$
see Table $6-9)^{\prime}$

$$
\begin{aligned}
& V_{m}=\frac{v_{m}}{\alpha} \\
& \alpha=\frac{V_{m}}{v_{m}}=\frac{4.8, m \sec ^{-1}}{1.6, m \sec ^{-1}}=3 \\
& k_{m^{2}}=\frac{\alpha k_{m}}{\alpha^{\prime}} \quad(\text { see table } 6-9) \\
& \alpha=\frac{k_{m} \alpha}{k_{m}}=\frac{(10, m)(3)}{(15, m)}=2 \\
& \alpha_{m}^{=}=3, \alpha=2
\end{aligned}
$$

(10)

$$
\begin{aligned}
& \text { a) } \mathrm{Km}=4 \mu \mathrm{~m} \\
& \text { Kat }=20 \mathrm{~min}^{1} \\
& {[8]=6 m m} \\
& v_{0}=180 \mathrm{uM} / \mathrm{min} \\
& K_{\text {cat }}=\frac{U_{m}}{(E)]} \\
& V_{0}=\frac{V_{m}[s]}{V_{m}+[s]} \\
& V_{m}=\frac{V_{0}\left(K_{m}+[S]\right)}{[5]} \\
& =\frac{(0.48 \mu \mathrm{~m} / \mathrm{min})(4 N m+6000 \mu \mathrm{~m})}{6000 \mu \mathrm{~m}} \\
& =\frac{1.92 \mathrm{wm}^{2} / \mathrm{man}^{2}+2880 \mathrm{~m}^{2} / \mathrm{mon}}{600 \mathrm{Nm}} \\
& \frac{2881.97 \mathrm{~m}^{2} / \mathrm{min}}{6000 \mathrm{~m}} \\
& 70.480 \mathrm{pm} / \mathrm{mon} \\
& \text { Kate } \frac{V_{m}}{[e]]} \\
& \text { [EA] } \frac{\text { Una }}{\text { Kant }^{?}} \frac{0.980 \mu \mathrm{~m} / \mathrm{min}}{20 \mathrm{~min}^{l}}, 0.024 \mathrm{~mm} \\
& {[c y]=0.024, \mathrm{~m} \text { or } 24 \mathrm{~nm}}
\end{aligned}
$$

$$
V_{\mathrm{m}^{2}}=10 \mathrm{~m} / \mathrm{mica}
$$

$$
U_{0}+\frac{U_{m}[s]}{V_{m+}+[S]}
$$

$$
V_{0}\left(k_{\text {un }}[S D)=V_{m}[S]\right.
$$

$$
\frac{\left(5, m \cdot \min ^{-1}\right)(4, m)+0, \operatorname{minin}^{-1}[s]}{6, m \cdot \min ^{-1}}=[s]
$$

$$
\left.\frac{\left(70, m^{2} \cdot \min ^{-1}\right)}{\log \operatorname{minin}^{1}}+0.5[s]=S S\right]
$$

0.5

$$
[5]=4 \mathrm{~m}
$$

c)

$$
\begin{aligned}
& \alpha=10 \\
& v_{0}=240 \mathrm{~mm}_{\text {min }}{ }^{-1} \quad[E-J=0.5, \mathrm{M} \\
& \quad 0.240 \mathrm{\mu mAmin}^{2}
\end{aligned}
$$

Sine the $\left[E_{T}\right]$ is The same as in (a), the Um must be the sane as mull. $V_{m}=0.48 \mathrm{pm} / \mathrm{mi}$

$$
\begin{aligned}
& \text { 1.) }\left[E_{T}\right]=0.5, \mathrm{~m} \\
& {[s]=?} \\
& v_{0}=5, \mathrm{M} \cdot \mathrm{~min}^{-1} \\
& V_{0}+=\frac{U_{\text {m }}}{[\theta]} \\
& V_{w}=K_{\text {cat }}[\text { af }]>\left(20 \cdot \text { min }^{-1}\right)(0.8, \mathrm{M})
\end{aligned}
$$

$V_{0}=0.240 \mu \mathrm{~m} / \mathrm{min}$ or 0.5 Vm
According to T.hle 6-9, Tor a Congetifie Tutibituen $K_{m}^{\prime}=\alpha K_{m} \quad U_{m}$ is malenged
Since the measured V_{0} is $\frac{1}{2} U_{m}$, the (A] must be the neasurd Kar volune, k_{n} -

$$
\begin{aligned}
& K_{m}{ }^{2}=\alpha \mathrm{Km} \\
& K_{m o n}=10(4, m)=40, M=[s]
\end{aligned}
$$

16

$$
\begin{array}{ll}
\alpha=1+\frac{[I]}{v_{I}} & {\left[E_{T}\right]=[E]+[E S]+[E I]} \\
k_{ \pm}=\frac{[E][I]}{[E]} & {\left[E_{T}\right]=[E]+[E S]+\left(\frac{[E](I)}{v_{I}}\right)} \\
{[E]=\frac{E][E]}{v_{I}}} & \\
& {[E]=[E S]+[E]\left(1+\frac{[I]}{u_{I}}\right)} \\
& {[E]=[E S]+[E] \alpha}
\end{array}
$$

Tanmber that:

$$
\begin{aligned}
& V_{0}=K_{2}[E S] \quad \text { ad that }[E S]=\frac{\left[E_{T}\right][S]}{K_{\text {on }}+[S]} \text { fiow the } \begin{array}{l}
\text { Stadid } \\
\text { stited } \\
\text { assuptina }
\end{array} \\
& {\left[_{E T}\right]=\frac{[E S] k_{m}+[E S][S]}{[S]}, \frac{[E S] \mathrm{km}(1+[S])}{[S]}} \\
& {\left[E_{-}\right]:\left[E S_{1}+[E]=\frac{[E S]\left(k_{m}+[S]\right)}{(S]}\right.} \\
& \frac{[[T]+1}{[[-5]}=\frac{K_{m}+[[s])}{[S]} \\
& \frac{[f]}{[[-5]}=\frac{k_{m}}{[s]}+1(-1) \\
& {[E]=\frac{k_{n}[[-S]}{[S]} \quad \text { Plog }[E] \text { nto }\left[E_{T}\right]=[E S]+[E] \alpha}
\end{aligned}
$$

$$
\begin{aligned}
& {[E,]=\frac{[E s] B+}{[S]} \frac{\left.\mathrm{Km}[E]_{1}\right] \alpha}{[S]}} \\
& {[E]=[E S]\left(\frac{[B]+K_{m} \alpha}{[S]}\right)} \\
& {[E S]=\left[E_{1}\right]\left(\frac{[S]}{(S T)+d_{m}{ }^{T}}\right) \text {. }} \\
& {[E S]=\frac{[[T][S]}{k_{4} q+[S]}} \\
& \text { multiply [ES] by } \frac{\text { SS] }}{[5]} \\
& \text { Plug ais ito Vovi[Es] } \\
& V_{0}=\frac{V_{[}\left[E_{T}\right][S]}{k_{m} \alpha+[S]} \text { and } v_{m}=k_{2}\left[E_{T}\right] \\
& V_{0}=\frac{V_{m}[s]}{K_{m} T+[s]}
\end{aligned}
$$

Chugter 6: 19, 21, 22
(19) The curnes look quite difteent, but only the V_{m} is weally changing. The Kim is essectially unclanged This is not a lialmank of a comectifine thibbitor (which actuly does the opposite). A vetazolamide is a mixed Fulibibe
(71) At $P A 5.2$ firen: $A_{5} p_{32}^{52} \quad p K_{A}=4.5$

The Glutamate is less than 50% deproturated The Aspanticacid is reanly fully deprotonatid. As the pA Tunuases, the glatamete vosidse which acts as a gocval acid in the mechenisan (and unist be protorated) becomes depritowated and the aetivily of Gsozque drops An the ptt leveases, the gaspartie aced stants to become protoristed. Thiss anied aciel acts as the aucleophice and monst be depiotoweded for the eityme ti be actire.
(11) a) When [s] Thceases from 0.2 to 0.4 fm , V_{0} mereases Z fold as well When $[S]$? $10, \mathrm{~m}, V_{0}=50 \mathrm{~m} / \mathrm{m} / \mathrm{sec}$
Honever the V_{0} incuease when $[S]$ inacases fhom $\log _{\mathrm{\mu}} \mathrm{M}$ to 200 MM is miviiunal suggestig that the ceantion is it Vm_{m} and the eatymu molenles are satuated of this concatiation of [S]
b) Whin $\alpha=2, K_{m}$ is $\frac{1}{2}$ when $\alpha^{\prime}=3, V_{\mathrm{m}}$ moreses 3 fold

1) When $\alpha-2$, the x-iatreypt mowes
(km incurases), when $\alpha=2$ and $\alpha=3$ The km appeara to deconase.
(13) a) Avgrive has a nesonme stablized positive change or the gnenidinion groop wheres glutenine has an amidel
Arginine ca stabilix the CZ arbocy arger wher pyourcte is bou?
b) Uyshe can provide a single hydugen boud whereas Arginze in proville 2
2) The resonane strbilized nugatire charge of pyomate intualts with the wishume stubilized positive clange acooss agizue.
d) The polon phtemine vesidue does not rutuact with the momatie ving of NADA as wll as isolencied does
c) Denloacetat stunture $6 \ln ^{102} \rightarrow$ Ang mintition

f) The mutant uses oxaloanetak because of the attraction between the CY cabouglate and the gumidinion group's positive charge on Arginine.
j) Indued fit allows for some "wiggle" in the active site of an enzyme.

SELF-TEST

Enzymes and the study of enzyme reaction rates (enzyme kinetics) are among the most difficult areas of biochemistry for students to assinilate. Consequently, more problems have been included in this chapter's Self-Test. If you work through
these problems carefully, your understanding of this material will be greatly enhanced. However, these problems will be beneficial only if you work through them to completion without looking at the answers.

Do You Know the Terms?

ACROSS

2. The slowest reaction in a sequence is the \qquad step.
3. State of a system in which no further net change is occurring.
4. The assumption that the rate of formation of ES is exactly equal to the rate of breakdown of ES is called the assumption. (2 words)
5. K cat $_{\text {cat }}$ is known as the \qquad number: At saturating substrate concentrations, $k_{\text {cat }}=V_{\text {max }} /\left[\mathrm{E}_{\mathrm{t}}\right]$.
6. Type of inhibitor that alters the K_{m} of an enzyme without altering $V_{\max }$.
7. Molecule that binds to the active site of an enzyme.
8. Relatively small portion of an enzyme that is involved in substrate binding. (2 words)
