2. Stable structures formed by lipids in water, which are held together by hydrophobic interactions. **4.** $H_2PO_4^- \Longrightarrow H^+ + PO_4^{2-}$ describes a _____ buffer

5. Compound containing both polar and nonpolar regions.

system.

ACRO	OSS							1									
3.	Describes a solution with a $[H^+]$ of 1×10^{-8} .	4	2]	3			2.0					5		
4.	Hydro molecules can form					_											
	energetically favorable interactions																
	with water molecules.													F	7		
6.	Water is often referred to as the	6												Ľ			
	"universal" because of its							8									
	ability to hydrate molecules and screen		1														
	charges.		4 +					-									
7.	Denotes the concentration of H ⁺ (and																
	therefore of OH ⁻) in an aqueous																
	solution.	9															
8.	The ion product of water; it is $1 \times$													_			
0.	10^{-14} M in aqueous solutions at 25 °C.	10	1 1			1 1		Т		12	13	14					
9	Theequation;	10	1							-	10	1.1					
٠.	describes the relationship between																
	pH and the pK_a of a buffer.		15					16									
10	The equilibrium constant for the				17	7											
10.	reaction HA \rightleftharpoons H ⁺ + A ⁻ is also	\mathbf{H}	18						19				20				
	called the constant, K_a .																
14	Hydro molecules decrease the			1844													
	entropy of an aqueous system by	21			22			23			24						
	causing water molecules to become																
	more ordered.			25		1		26									
15.	The numbers 1, 10, 100, and 1000 are																
10.	placed at equal intervals on a											l					
	scale.	27															
	Reaction in which two reactants	_															
	combine to form a single product with																
	the elimination water.																
	A plot of pH vs. OH ⁻ equivalents added is	a			0	The	alactr	netat	ic inte	eractio	ons bet	ween :	the h	vdrog	en and		
-0.	curve.																
19	Weak interactions that are crucial to the structure and					oxygen atoms on adjacent H_2O molecules constitute a (2 words)											
	function of macromolecules.					11. Dissolved molecules.											
21.	Describes a solution in which [OH ⁻] is greater than [H ⁺].					2. Covalent bond breakage by the addition of water.											
	A mixture of a weak acid and its conjugate										issolve				as		
24.	Enzymes show maximum activity at a cha																
			1				and (icy s	21 0011			Lacone	50	5011		
25	HA is a proton								Δc1 -	[Ac	1						
	The point in a reversible chemical reaction at which the										j. describ	AS 3		buff	er		
20.	rate of product formation equals the rate of product					syste		- 11	1 11	003 (1000110	C5 a		_ 5411	Ç1		
	breakdown to the starting reactants.	or prod			20			0 001	ution	in wh	ich [H	+lie or	eater	than	IOH-I		
27	A is a proton										veaker						
41.	11 15 a protott				40.			onds		iave v	veakel	Doriu _		0110	AIL .		
DOM	/AI					cova	ieili l	onus									
DOV	V IN																
1.	The radius is approximately twic	e the di	stanc	е													
	of a covalent radius for a single bond. (3 v																