SELF-TEST

Do You Know the Terms?

ACROSS

	1000																
1.	<i>G</i> ; free																
4.	Amino acids are the	1				14 25 2		2								3	
	subunits of		_		N CORE										Serent	GRADA	
	proteins.									4					Y	13130	.8
5.	The randomness of the		+												- lai	a torro	.0
	components of a																
	chemical system; S.		-		5		W. I					Īć.		т т			
6.	Amino acid is to				1		22					10					
	as monomer is			7	1000	a back						<u> </u>				+	
	to polymer.															1000	
8.	The complete set of					8	0.1			9	10	7	11	П			
	genetic material					E I I I									3 610		
	needed for the growth														Liberal	1275	100
	and development of an		4	10				,			# 1 EEE			ite og			
	organism.			12										13			
11	Glycine is the only		-	-	-												
	amino acid lacking an										100			93.5			
	asymmetric or	14				15	T	16	Print St.		1000	+	Т	+		+	
	carbon.				1000									100			
2.	Reactions requiring an							0.00				+				\perp	
	input of energy from																
	the surroundings											_					
	are thermic		4														
	reactions.							17							18		
1	In																
	reactions, electrons													in is	iei ce		
	are transferred from a		19	Τ	Π		Т			10		20	7			-	
	more reduced to a											120					
	more oxidized mole-				III.		Eq. (1			1	
	cule.																
7	A type of weak inter-	21														1	
	action that stabilizes																
	the native conforma-																
	tion of a biomolecule					20											
	more of a profittorecine					22						1					

- 19. Describes a reaction for which the free-energy change (ΔG) is negative.
- **21.** The internal components of cells and the aqueous solution in which they are suspended.

or supramolecular

complex.

22. Molecules having the same composition and order of atomic connections, but different spatial arrangements among the atoms.

DOWN

- 1. Mitochondria are thought to have evolved from bacteria that formed _____ associations with the ancestors of modern eukaryotes.
- **2.** Proteins encoded by two genes that share similar nucleotide sequences.
- **3.** Enzymes enhance the rate of chemical reactions by lowering the _____ energy that constitutes an energy barrier between reactants and products.

- 7. An equimolar mixture of the D and L isomers of an optically active compound is a _____ mixture.
- 9. Describes a reaction for which the free-energy change (ΔG) is positive.
- **10.** Structural components of membranes; energy storage molecules.
- 13. The energy or heat content of a system; H.
- 15. Organisms that can synthesize most of the molecules necessary for their growth from simple compounds, such as ${\rm CO_2}$ and ${\rm NH_3}$.
- **16.** A system that exchanges energy and material with its surroundings is said to be _____.
- **18.** Membrane-bounded compartment, present only in eukaryotes, that contains chromosomes.
- **20.** ______-synthetic organisms convert solar energy into ATP.