BRGEXM6v00010000˜ßêNùú"ú>ús     câ N'µ6FÔR¾`ŸpE~pˆ’¡Ç¨‡¶ò¾çÉäОÕyÚ{The artificial sweetener NutraSweet®, also called aspartame, is a simple dipeptide, aspartylphenylalanine methyl ester, on which the free carboxyl of the dipeptide is esterified to methyl alcohol. Draw the structure of aspartame, showing the ionizable grouDifficulty2Page82 Topic*Peptides and proteinsL{E20477CB-72C0-418F-848D-1F4938B2F0D8}bChapter 3- Amino Acids, Peptides, and Proteins.qf58 _CRC32666068437ô4{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 The artificial sweetener \plain\f0\DN\fs24\DS0 NutraSweet{\super \'AE}\plain\f0\DN\fs24\DS0 , also called aspartame, is a simple \plain\f0\DN\fs24\DS0 dipeptide\plain\f0\DN\fs24\DS0 , \plain\f0\DN\fs24\DS0 aspartylphenylalanine\plain\f0\DN\fs24\DS0 methyl \plain\f0\DN\fs24\DS0 ester\plain\f0\DN\fs24\DS0 , on which the free \plain\f0\DN\fs24\DS0 carboxyl\plain\f0\DN\fs24\DS0 of the \plain\f0\DN\fs24\DS0 dipeptide\plain\f0\DN\fs24\DS0 is \plain\f0\DN\fs24\DS0 esterified\plain\f0\DN\fs24\DS0 to methyl alcohol. Draw the structure of aspartame, showing the \plain\f0\DN\fs24\DS0 ionizable\plain\f0\DN\fs24\DS0 groups in the form they have at pH 7. (The \plain\f0\DN\fs24\DS0 ionizable\plain\f0\DN\fs24\DS0 group in the side chain of \plain\f0\DN\fs24\DS0 aspartate\plain\f0\DN\fs24\DS0 has a \plain\f0\DN\fs24\DS0 p\i K{\sub\i0 a}\plain\f0\DN\fs24\DS0 of 3.96.) }±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}ç{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 See the structure on p. 83.}®{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl;\red255\green255\blue255;\red0\green0\blue0;}\plain\plain\f0\DN\fs24\DS0}L{FAB32155-17C1-40E2-ABE7-6471CD7E5A1E}é†Hydrophobic interactions make important energetic contributions to:Difficulty2Page 48 49 TopicHWeak interactions in aqueous systemsL{E20477CB-72C0-418F-848D-1F4938B2F0D8}&Chapter 2- Water.qf3 _CRC3216098876591 &{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 Hydrophobic\plain\f0\DN\fs24\DS0 interactions make important energetic contributions to: }±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}ù{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 binding of a hormone to its receptor protein.}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}ê{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 enzyme-substrate interactions.}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}ß{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 membrane structure.}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}){\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 three-dimensional folding of a \plain\f0\DN\fs24\DS0 polypeptide\plain\f0\DN\fs24\DS0 chain.}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}æ{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 All of the above are true.}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}®{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl;\red255\green255\blue255;\red0\green0\blue0;}\plain\plain\f0\DN\fs24\DS0}¿>A compound has a pKa of 7.4. To 100 mL of a 1.0 M solution of this compound at pH 8.0 is added 30 mL of 1.0 M hydrochloric acid. The resulting solution is pH:Difficulty3Page 59 61 TopicdBuffering against pH changes in biological systemsL{E20477CB-72C0-418F-848D-1F4938B2F0D8}&Chapter 2- Water.qf15 _CRC32-418403786s ){\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 A compound has a \plain\f0\DN\fs24\DS0 p\i K{\sub\i0 a}\plain\f0\DN\fs24\DS0 of 7.4. To 100 \plain\f0\DN\fs24\DS0 mL\plain\f0\DN\fs24\DS0 of a 1.0 M solution of this compound at pH 8.0 is added 30 \plain\f0\DN\fs24\DS0 mL\plain\f0\DN\fs24\DS0 of 1.0 M \plain\f0\DN\fs24\DS0 hydrochloric\plain\f0\DN\fs24\DS0 acid. The resulting solution is pH: }±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}Ð{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 6.5.}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}Ð{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 6.8.}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}Ð{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 7.2.}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}Ð{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 7.4.}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}Ð{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 7.5.}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}®{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl;\red255\green255\blue255;\red0\green0\blue0;}\plain\plain\f0\DN\fs24\DS0}c¾The most important contribution to the stability of a protein's conformation appears to be the:Difficulty2Page114 115 Topic:Overview of protein structureL{E20477CB-72C0-418F-848D-1F4938B2F0D8}rChapter 4- The Three-Dimensional Structure of Proteins.qf2 _CRC321827682313ô ,{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 The most important contribution to the stability of a protein's conformation appears to be the: }±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0},{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 entropy increase from the decrease in ordered water molecules forming a solvent shell around it.}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}‚{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 maximum entropy increase from \plain\f0\DN\fs24\DS0 ionic\plain\f0\DN\fs24\DS0 interactions between the \plain\f0\DN\fs24\DS0 ionized\plain\f0\DN\fs24\DS0 amino acids in a protein.}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}7{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 sum of free energies of formation of many weak interactions among the hundreds of amino acids in a protein.}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}<{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 sum of free energies of formation of many weak interactions between its polar amino acids and surrounding water.}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}m{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 stabilizing effect of hydrogen bonding between the \plain\f0\DN\fs24\DS0 carbonyl\plain\f0\DN\fs24\DS0 group of one peptide bond and the amino group of another.}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}®{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl;\red255\green255\blue255;\red0\green0\blue0;}\plain\plain\f0\DN\fs24\DS0}áDIn an aqueous solution, protein conformation is determined by two major factors. One is the formation of the maximum number of hydrogen bonds. The other is the:Difficulty1Page115 Topic:Overview of protein structureL{E20477CB-72C0-418F-848D-1F4938B2F0D8}rChapter 4- The Three-Dimensional Structure of Proteins.qf3 _CRC321409805603w o{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 In an aqueous solution, protein conformation is determined by two major factors. One is the formation of the maximum number of hydrogen bonds. The other is the: }±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}4{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 formation of the maximum number of \plain\f0\DN\fs24\DS0 hydrophilic\plain\f0\DN\fs24\DS0 interactions.}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 maximization of \plain\f0\DN\fs24\DS0 ionic\plain\f0\DN\fs24\DS0 interactions.}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}!{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 minimization of entropy by the formation of a water solvent shell around the protein.}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}H{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 placement of \plain\f0\DN\fs24\DS0 hydrophobic\plain\f0\DN\fs24\DS0 amino acid residues within the interior of the protein.}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 placement of polar amino acid residues around the exterior of the protein.}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}®{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl;\red255\green255\blue255;\red0\green0\blue0;}\plain\plain\f0\DN\fs24\DS0}‚Roughly how many amino acids are there in one turn of an ± helix?Difficulty2Page117 Topic6Protein secondary structureL{E20477CB-72C0-418F-848D-1F4938B2F0D8}rChapter 4- The Three-Dimensional Structure of Proteins.qf10 _CRC32-1905120504ˆ F{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}{\f1\froman\fcharset2 Symbol;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 Roughly how many amino acids are there in one turn of an \f1 a\plain\f0\DN\fs24\DS0 helix? }±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}Í{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 1}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}Ï{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 2.8}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}Ï{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 3.6}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}Ï{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 4.2}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}Î{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 10}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}®{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl;\red255\green255\blue255;\red0\green0\blue0;}\plain\plain\f0\DN\fs24\DS0}éDIn the ± helix the hydrogen bonds:Difficulty2Page117 119 Topic6Protein secondary structureL{E20477CB-72C0-418F-848D-1F4938B2F0D8}rChapter 4- The Three-Dimensional Structure of Proteins.qf11 _CRC32-1759629857ñ '{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}{\f1\froman\fcharset2 Symbol;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 In the \f1 a\plain\f0\DN\fs24\DS0 helix the hydrogen bonds: }±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}ú{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 are roughly parallel to the axis of the helix.}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}ÿ{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 are roughly perpendicular to the axis of the helix.}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}3{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 occur mainly between \plain\f0\DN\fs24\DS0 electronegative\plain\f0\DN\fs24\DS0 atoms of the R groups.}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 occur only between some of the amino acids of the helix.}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}`{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 occur only near the amino and \plain\f0\DN\fs24\DS0 carboxyl\plain\f0\DN\fs24\DS0 \plain\f0\DN\fs24\DS0 termini\plain\f0\DN\fs24\DS0 of the helix.}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}®{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl;\red255\green255\blue255;\red0\green0\blue0;}\plain\plain\f0\DN\fs24\DS0}±The major reason that antiparallel ²-stranded protein structures are more stable than parallel ²-stranded structures is that the latter:Difficulty1Page120 121 Topic6Protein secondary structureL{E20477CB-72C0-418F-848D-1F4938B2F0D8}rChapter 4- The Three-Dimensional Structure of Proteins.qf16 _CRC32171085358 Ó{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}{\f1\froman\fcharset2 Symbol;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 The major reason that \plain\f0\DN\fs24\DS0 antiparallel\plain\f0\DN\fs24\DS0 \f1 b\plain\f0\DN\fs24\DS0 -stranded protein structures are more stable than parallel \f1 b\plain\f0\DN\fs24\DS0 -stranded structures is that the latter: }±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}@{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 are in a slightly less extended configuration than \plain\f0\DN\fs24\DS0 antiparallel\plain\f0\DN\fs24\DS0 strands.}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}f{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 do not have as many \plain\f0\DN\fs24\DS0 disulfide\plain\f0\DN\fs24\DS0 \plain\f0\DN\fs24\DS0 crosslinks\plain\f0\DN\fs24\DS0 between adjacent strands.}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}/{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 do not stack in sheets as well as \plain\f0\DN\fs24\DS0 antiparallel\plain\f0\DN\fs24\DS0 strands.}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}4{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 have fewer lateral hydrogen bonds than \plain\f0\DN\fs24\DS0 antiparallel\plain\f0\DN\fs24\DS0 strands.}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0} {\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 have weaker hydrogen bonds laterally between adjacent strands.}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}®{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl;\red255\green255\blue255;\red0\green0\blue0;}\plain\plain\f0\DN\fs24\DS0}»Proteins often have regions that can fold and function as an independent entity from the whole protein. These regions are called:Difficulty1Page135 TopicTProtein tertiary and quaternary structuresL{E20477CB-72C0-418F-848D-1F4938B2F0D8}rChapter 4- The Three-Dimensional Structure of Proteins.qf23 _CRC32228863987Û O{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 Proteins often have regions that can fold and function as an independent entity from the whole protein. These regions are called: }±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}Ô{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 domains.}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}ì{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 oligomers\plain\f0\DN\fs24\DS0 .}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}ë{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 peptides\plain\f0\DN\fs24\DS0 .}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}Ò{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 sites.}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}Õ{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 subunits.}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}®{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl;\red255\green255\blue255;\red0\green0\blue0;}\plain\plain\f0\DN\fs24\DS0}¹‘½ÃɵÁ 1 ¿Æ Ä·µ Æ¿»»¿É¹½³ 3 ¸ÅµÃĹ¿½Ã ±²¿ÅÄ Ä·µ ƹ²Á¿Åà ÀÁ¿Äµ¹½Ã ɵ ´¹ÃÇÅÃõ´ ¹½ »µÇÄÅÁµ. ™Æ È¿Å ±½ÃɵÁ ±»» 3, È¿Å "»» ÁµÇµ¹Öµ ²¿½Åà À¿¹½ÄÃ. ¹) ©·È ¹Ã ù»º ƹ²Á¿¹½ ÿ ÃÄÁ¿½³, ²ÅÄ ±Ä Ä·µ ñ¼µ Ĺ¼µ ÿ ÿÆÄ ±½´ Æ»µ¾¹²»µ? ¹¹) ©·±Ä ³¹ÖµÃ Ç¿»»±³µ½ ¹Äà ·Difficulty2Page128 TopicTProtein tertiary and quaternary structuresL{E20477CB-72C0-418F-848D-1F4938B2F0D8}rChapter 4- The Three-Dimensional Structure of Proteins.qf48 _CRC321066482215b]{\rtf1\mac{\fonttbl{\f0\fnil Times New Roman;}{\f1\fnil Symbol;}}{\colortbl\red0\green0\blue0 ;}{\pard\plain\f0\fs24\cf0\ql Answer 1 of the following 3 questions about the fibrous proteins we discussed in lecture. If you answer all 3, you'll receive bonus points.\par\par i) Why is silk fibroin so strong, but at the same time so soft and flexible?\par\par\par\par\par\par\par ii) What gives collagen its high tensile strength?\par\par\par\par\par\par\par iii) {\f1 a}-keratin has a unique amino acid in it. What is this amino acid and what disease is caused by a deficiency of it? \par\par\par\par}}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}){\rtf1\mac {\fonttbl {\f0\fnil Times New Roman;} {\f1\fnil Symbol;}} {\colortbl \red0\green0\blue0;} {\pard\plain\f0\fs24\cf0\ql Unlike collagen and keratin, silk fibroin has no covalent crosslinks between adjacent strands, or between its stacked sheets, making it very flexible. Fibroin's unusual tensile strength derives from the fact that the peptide backbone of antiparallel {\f1 b}-strands is fully extended, and that the R-groups in the stacked pleated sheets interdigitate, preventing any longitudinal sliding of the sheets across one another.}}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}L{03BF2B57-3A49-4F5C-8788-95BFEB4C7CD5}ѽÃɵÁ Ä·µ Æ¿»»¿É¹½³ ¸ÅµÃĹ¿½Ã ±²¿ÅÄ ÀÁ¿Äµ¹½ Æ¿»´¹½³: ¹) ©·±Ä ɱà ķµ ‘½Æ¹½Ãµ½ µ¾ÀµÁ¹¼µ½Ä? ©·±Ä ´¹´ ·¹Ã É¿Áº ÷¿É? ¹¹) ©·±Ä ¹Ã ›µÖ¹½Ä·±» "à  ±Á±´¿¾? ¹¹¹) ”µÃÇÁ¹²µ Ä·µ Ç·Á¿½¿»¿³È ¿Æ Ä·µ Æ¿»´¹½³ ¿Æ ± ³»¿²Å»±Á ÀÁ¿Äµ¹½. ¨¿Å ¼ÅÃÄ Åõ Ä·µ ĵÁ¼Ã ±½Difficulty1Page135 136 TopicTProtein tertiary and quaternary structuresL{E20477CB-72C0-418F-848D-1F4938B2F0D8}rChapter 4- The Three-Dimensional Structure of Proteins.qf52 _CRC32-1050725620“{\rtf1\mac{\fonttbl{\f0\fnil Times New Roman;}}{\colortbl\red0\green0\blue0 ;}{\pard\plain\f0\fs24\cf0\ql Answer the following questions about protein folding:\par\par i) What was the Anfinsen experiment? What did his work show?\par\par\par\par\par\par ii) What is Levinthal's Paradox?\par\par\par\par\par\par iii) Describe the chronology of the folding of a globular protein. You must use the terms and concepts we discussed when describing how a protein goes from a linear sequence of amino acids to a compact, functional molecule.\par\par\par\par\par iv) What is meant by the terms "Motifs" and "Domains"? What are the differences between the two?}}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}S{\rtf1\mac {\fonttbl {\f0\fnil Times New Roman;} {\f1\fnil Symbol;}} {\colortbl \red0\green0\blue0;} {\pard\plain\f0\fs24\cf0\ql Motifs are particularly stable arrangements of elements of secondary structure (e.g., {\f1 a} helix and {\f1 b} conformation), including the connections between them, which are found in a variety of proteins.}}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}L{94768B29-3008-45BD-8ECB-497202CD6ED7}O’An allosteric interaction between a ligand and a protein is one in which:Difficulty2Page161 162 TopicˆReversible binding of a protein to a ligand: oxygen-binding proteinsL{E20477CB-72C0-418F-848D-1F4938B2F0D8}<Chapter 5- Protein Function.qf7 _CRC32-440354091œ n{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 An \plain\f0\DN\fs24\DS0 allosteric\plain\f0\DN\fs24\DS0 interaction between a \plain\f0\DN\fs24\DS0 ligand\plain\f0\DN\fs24\DS0 and a protein is one in which: }±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}-{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 binding of a molecule to a binding site affects binding of additional molecules to the same site.}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}.{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 binding of a molecule to a binding site affects binding properties of another site on the protein.}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}){\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 binding of the \plain\f0\DN\fs24\DS0 ligand\plain\f0\DN\fs24\DS0 to the protein is covalent.}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}@{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 multiple molecules of the same \plain\f0\DN\fs24\DS0 ligand\plain\f0\DN\fs24\DS0 can bind to the same binding site.}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}0{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 two different \plain\f0\DN\fs24\DS0 ligands\plain\f0\DN\fs24\DS0 can bind to the same binding site.}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}®{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl;\red255\green255\blue255;\red0\green0\blue0;}\plain\plain\f0\DN\fs24\DS0}Aˆ(±) ©·±Ä ¹Ã Ä·µ µÆƵÇÄ ¿Æ À— ¿½ Ä·µ ²¹½´¹½³ ¿Æ ¿¾È³µ½ Ä¿ ·µ¼¿³»¿²¹½ (Ä·µ ’¿·Á •ÆƵÇÄ)? (²) ’Á¹µÆ»È ´µÃÇÁ¹²µ Ä·µ ¼µÇ·±½¹Ã¼ ¿Æ Ä·¹Ã µÆƵÇÄ Åù½³ ÃÀµÇ¹Æ¹Ç ´µÄ±¹»Ã, ±¼¹½¿ ±Ç¹´Ã ±½´ Ç·µ¼¹Ç±» Áµ±ÇĹ¿½Ã.Difficulty2Page166 TopicˆReversible binding of a protein to a ligand: oxygen-binding proteinsL{E20477CB-72C0-418F-848D-1F4938B2F0D8}<Chapter 5- Protein Function.qf34 _CRC32-1643439852v1{\rtf1\mac{\fonttbl{\f0\fnil Times New Roman;}}{\colortbl\red0\green0\blue0 ;}{\pard\plain\f0\fs24\cf0\ql (a) What is the effect of pH on the binding of oxygen to hemoglobin (the Bohr Effect)? (b) Briefly describe the mechanism of this effect using specific details, amino acids and chemical reactions. }}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}i{\rtf1\mac {\fonttbl {\f0\fnil Times New Roman;}} {\colortbl \red0\green0\blue0;} {\pard\plain\f0\fs24\cf0\ql (a) The affinity decreases with decreasing pH. (b) At lower pH (i.e., higher H{\super +} concentration), there is increasing protonation of protein residues such as histidine, which stabilizes the low affinity conformation of the protein subunits.}}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}L{03B2B169-0251-48FC-A808-E72B583110E7}ˆThe steady state assumption, as applied to enzyme kinetics, implies:Difficulty2Page196 TopicrEnzyme kinetics as an approach to understanding mechanismL{E20477CB-72C0-418F-848D-1F4938B2F0D8}*Chapter 6- Enzymes.qf16 _CRC321326143832™ {\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 The steady state assumption, as applied to enzyme kinetics, implies: }±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\i K{\sub\i0 m}\plain\f0\DN\fs24\DS0 = \i K{\sub\i0 s}\plain\f0\DN\fs24\DS0 .}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}ä{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 the enzyme is regulated.}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}5{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 the \plain\f0\DN\fs24\DS0 ES\plain\f0\DN\fs24\DS0 complex is formed and broken down at equivalent rates.}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0},{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 the \i K{\sub\i0 m}\plain\f0\DN\fs24\DS0 is equivalent to the cellular substrate concentration.}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0\pard\plain\f0\DN\fs24\DS0 the maximum velocity occurs when the enzyme is saturated.}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}®{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl;\red255\green255\blue255;\red0\green0\blue0;}\plain\plain\f0\DN\fs24\DS0}=‘½ÃɵÁ Ä·µ Æ¿»»¿É¹½³ ¸ÅµÃĹ¿½Ã ±²¿ÅÄ µ½¶È¼µ DZı»È¶µ´ Áµ±ÇĹ¿½Ã: ¹) ©Á¹Äµ ¿ÅÄ Ä·µ µ½¶È¼µ DZı»È¶µ´ Ç·µ¼¹Ç±» Áµ±ÇĹ¿½ ɹķ ±»» ĵÁ¼Ã (•, £ ±½´  ), Ä·µ Ç¿ÁÁµÇÄ ±ÁÁ¿Éà ±½´ ±»» Á±Äµ Ç¿½Ãı½Äà ¿ÖµÁ Ä·µ¹Á ÁµÃÀµÇĹֵ µÁÁ¿ÁÃ. ¹¹) ”Á±É ±½´ »±²µ» ± Áµ±ÇĹ¿½ Ç¿Difficulty2Page187 Topic How enzymes workL{E20477CB-72C0-418F-848D-1F4938B2F0D8}*Chapter 6- Enzymes.qf44 _CRC32-680703155½{\rtf1\mac{\fonttbl{\f0\fnil Times New Roman;}{\f1\fnil Symbol;}}{\colortbl\red0\green0\blue0 ;}{\pard\plain\f0\fs24\cf0\ql Answer the following questions about enzyme-catalyzed reactions:\par\par i) Write out the enzyme-catalyzed chemical reaction with all terms (E, S and P), the correct arrows and all rate constants over their respective errors.\par\par\par\par ii) Draw and label a reaction coordinate diagram for an enzyme-catalyzed reaction, S {\f1 \'AE} P.\par\par\par\par\par\par iii) How does an enzyme decrease the {\f1 D}G{\super *} (transition state free energy) for the chemical reaction? In other words, what traits of enzymes allow them to be efficient catalysts?\par\par\par\par}}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}…{\rtf1\mac {\fonttbl {\f0\fnil Times New Roman;}} {\colortbl \red0\green0\blue0;} {\pard\plain\f0\fs24\cf0\ql See Fig. 6-3, p. 187.}}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}L{9F0BE26D-D8A4-4CFD-9A28-4F57F2D2188C}™‘½ÃɵÁ Ä·µ Æ¿»»¿É¹½³ ¸ÅµÃĹ¿½Ã ±²¿ÅÄ µ½¶È¼µ º¹½µÄ¹ÇÃ. ¹) ¤·µ œ¹Ç·±µ»¹Ã œµ½Äµ½ Ç¿½Ãı½Ä, š¼, ¹Ã ±ÇÄű»»È ± Ãż¼±ÁÈ ¿Æ Ä·Áµµ ĵÁ¼Ã. ©·±Ä ¹Ã Ä·µ ¼±Ä·µ¼±Ä¹Ç±» ÁµÀÁµÃµ½Ä±Ä¹¿½ ¿Æ Ä·µ œ¹Ç·±µ»¹Ã Ç¿½Ãı½Ä ±½´ É·±Ä ´¿µÃ ¹Ä ÁµÀÁµÃµ½Ä Æ¿Á ¼¿ÃÄ µ½¶È¼µ DZı»È¶µ´ Áµ±ÇDifficulty2Page196 198 TopicrEnzyme kinetics as an approach to understanding mechanismL{E20477CB-72C0-418F-848D-1F4938B2F0D8}*Chapter 6- Enzymes.qf54 _CRC32-1470127851Lï{\rtf1\mac{\fonttbl{\f0\fnil Times New Roman;}}{\colortbl\red0\green0\blue0 ;}{\pard\plain\f0\fs24\cf0\ql Answer the following questions about enzyme kinetics.\par\par i) The Michaelis-Menten constant, {\i K}{\sub m}, is actually a summary of three terms. What is the mathematical representation of the Michaelis constant and what does it represent for most enzyme catalyzed reactions?\par\par ii) Write out the Michaelis-Menton equation and show what a plot of initial velocity as a function of substrate concentration would look like. Label the Vm and the Km on your plot.\par\par\par iii) What is the Lineweaver Burk approximation of the Michaelis-Menton equation? Using this equation, how would you determine Vm and Km for a given enzyme? }}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}{\rtf1\mac {\fonttbl {\f0\fnil Times New Roman;}} {\colortbl \red0\green0\blue0;} {\pard\plain\f0\fs24\cf0\ql {\i K}{\sub m} = ({\i k}{\sub 2 }+{\i k}{\sub -1})/{\i k}{\sub 1}, where {\i k}{\sub -1 }and {\i k}{\sub 1} are the rate constants for the breakdown and association,\par respectively, of the ES complex and {\i k}{\sub 2} is the rate constant for the breakdown of ES to form E + P. {\i K}{\sub m} can be determined graphically on a plot of {\i V}{\sub 0} vs. [S] by finding the [S] at which {\i V}{\sub 0} = 1/2 {\i V}{\sub max}. More conveniently, on a double-reciprocal plot, the {\i x}-axis intercept = \'d01/ {\i K}{\sub m}.}}±{\rtf1\ansi\deflang1033\uc1\deff0{\fonttbl{\f0\STDFONT\froman\fcharset0 Times New Roman;}}{\colortbl ;\red255\green255\blue255 ;\red0\green0\blue0 ;}\plain\plain\f0\DN\fs24\DS0}L{62618DE0-8CF2-4E54-8E30-05614E25C509}k‘½ÃɵÁ Ä·µ Æ¿»»¿É¹½³ ¸ÅµÃĹ¿½Ã ±²¿ÅÄ ÃµÁ¹½µ ÀÁ¿Äµ±ÃµÃ. ¨¿Å ¼ÅÃÄ ³¹Öµ ÃÀµÇ¹¹ÆÇ Ç·µ¼¹Ç±» ±½´ ²¹¿»¿³¹Ç±» ½±¼µÃ ¹½ È¿ÅÁ ±½ÃɵÁÃ. ¹) —¿É ´¿ Ä·µÃµ µ½¶È¼µÃ Ãı²¹»¹¶µ Ä·µ ÄÁ±½Ã¹Ä¹¿½ Ãıĵ? ¹¹) ©·±Ä ÃÄÁÅÇÄÅÁ±» ¼¿Ä¹Æ ¹Ã Ä·µ ·±»»¼±Áº ¿Æ Ä·¹Ã Ʊ¼¹»È ¿Æ µ½¶PossibleExam1ÿÿÿÿ _CRC321209000299‚À{\rtf1\mac{\fonttbl{\f0\fnil Times New Roman;}}{\colortbl\red0\green0\blue0 ;\red255\green255\blue255 ;}{\pard\plain\f0\fs24\cf0\ql{\highlight1 Answer the following questions about serine proteases. You must give speciifc chemical and biological names in your answers.\par\par\par\par i) How do these enzymes stabilize the transition state?\par\par\par\par\par\par\par ii) What structural motif is the hallmark of this family of enzymes?\par\par\par\par\par\par\par iii) Only one amino acid in your answer to question (ii) is the nucleophile for the reaction, what role do the other amino acids in the motif play?\par\par\par\par\par iv) Serine proteases are a perfect example of the two types of molecular evolution. What are these types and give specific examples of how the serine proteases serve as an example of each.\par\par\par\par\par\par\par v) Complete the reaction mechanism for a typical serine protease below:\par\par\par\par\par\par\par}}}˜{\rtf1\mac {\fonttbl {\f0\fnil Times New Roman;}} {\colortbl \red0\green0\blue0; \red255\green255\blue255;} {\pard\plain\f0\fs24\cf0\ql {\highlight1 }}}]ð”Á±É ›¹½µÉµ±ÖµÁ ’ÅÁº À»¿Äà ƿÁ µ±Ç· ¿Æ Ä·µ Ä·Áµµ ÄÈÀµÃ ¿Æ ½¿½ Ç¿Ö±»µ½Ä ¹½·¹²¹Ä¹¿½ ±Ä 2 Ç¿½Çµ½ÄÁ±Ä¹¿½Ã ¿Æ ¹½·¹²¹Ä¿Á. ¨¿Å ¼ÅÃÄ ´Á±É Ä·µ Ç·µ¼¹Ç±» Áµ±ÇĹ¿½ Æ¿Á µ±Ç· ÄÈÀµ ¿Æ ¹½·¹²¹Ä¹¿½ ±½´ ³¹Öµ Ä·µ ½±¼µ ¿Æ Ä·µ ÄÈÀµ ¿Æ ¹½·¹²¹Ä¹¿½ Ž´µÁ µ±Ç· ¿Æ Ä·µ À»¿ÄÃ.PossibleExam1ÿÿÿÿ _CRC32-1319301691M‹{\rtf1\mac{\fonttbl{\f0\fnil Times New Roman;}}{\colortbl\red0\green0\blue0 ;\red255\green255\blue255 ;}{\pard\plain\f0\fs24\cf0\ql{\highlight1 Draw Lineweaver-Burk plots for each of the three types of non-covalent inhibition at 2 concentrations of inhibitor. You must draw the chemical reaction for each type of inhibition and give the name of the type of inhibition under each of the plots.}}}˜{\rtf1\mac {\fonttbl {\f0\fnil Times New Roman;}} {\colortbl \red0\green0\blue0; \red255\green255\blue255;} {\pard\plain\f0\fs24\cf0\ql {\highlight1 }}}cú¡‘õ ‘ ¹Ã ±½ µ¾±¼À»µ ¿Æ ± “µÁ½µÁ±» _____ _____ ÄÈÀµ ¿Æ Áµ±ÇĹ¿½ ¼µÇ·±½¹Ã¼ (ƹ»» ¹½ Ä·µ ²»±½ºÃ À»µ±Ãµ). ©·±Ä ±Áµ Ä·µ ÃÀµÇ¹Æ¹Ç ±¼¹½¿ ±Ç¹´Ã Ä·±Ä ÁµÀÁµÃµ½Ä É·±Ä ȿŠƹ»»µ´ Ä·µ ²»±½ºÃ ¹½ ɹķ? ¹¹) §¿¼À»µÄµ Ä·µ Áµ±ÇĹ¿½ ¼µÇ·±½¹Ã¼ Æ¿Á ¡‘õ ‘ ³¹Öµ½ ²µ»¿É.PossibleExam1ÿÿÿÿ _CRC32801274130h¦{\rtf1\mac{\fonttbl{\f0\fnil Times New Roman;}}{\colortbl\red0\green0\blue0 ;\red255\green255\blue255 ;}{\pard\plain\f0\fs24\cf0\ql{\highlight1 RNAse A is an example of a Gerneral _____-_____ type of reaction mechanism (fill in the blanks please). What are the specific amino acids that represent what you filled the blanks in with?\par\par\par ii) Complete the reaction mechanism for RNAse A given below.\par\par\par}}}˜{\rtf1\mac {\fonttbl {\f0\fnil Times New Roman;}} {\colortbl \red0\green0\blue0; \red255\green255\blue255;} {\pard\plain\f0\fs24\cf0\ql {\highlight1 }}}3Ƥ±ºµ È¿ÅÁ À¹Çº: ›Èÿ¶È¼µ ¿Á —™Â ÀÁ¿Äµ±Ãµ. ©·±Ä ±Áµ Ä·µ DZı»ÈÄ¹Ç ±¼¹½¿ ±Ç¹´Ã ¹½Ö¿»Öµ´ ¹½ Ä·µ Áµ±ÇĹ¿½ ¼µÇ·±½¹Ã¼ ¿Æ È¿ÅÁ Ç·¿Ãµ½ µ½¶È¼µ? ¹) ¦¿Á 5 ²¿½Åà À¿¹½Äà ´Á±É Ä·µ Ç¿¼À»µÄµ Áµ±ÇĹ¿½ ¼µÇ·±½¹Ã¼ Æ¿Á È¿ÅÁ Ç·¿Ãµ½ µ½¶È¼µ.PossibleExam1ÿÿÿÿ _CRC32-1735295520K‰{\rtf1\mac{\fonttbl{\f0\fnil Times New Roman;}}{\colortbl\red0\green0\blue0 ;\red255\green255\blue255 ;}{\pard\plain\f0\fs24\cf0\ql{\highlight1 Take your pick: Lysozyme or HIV protease. What are the catalytic amino acids involved in the reaction mechanism of your chosen enzyme? \par\par\par\par\par\par i) For 5 bonus points draw the complete reaction mechanism for your chosen enzyme.}}}˜{\rtf1\mac {\fonttbl {\f0\fnil Times New Roman;}} {\colortbl \red0\green0\blue0; \red255\green255\blue255;} {\pard\plain\f0\fs24\cf0\ql {\highlight1 }}}߉ã'æb§—•œ523 •¾±¼ #1 ±¼µ: _________________________________________ £µÇĹ¿½ 1. ¦Å½! ‘½ÃɵÁ Ä·µ Æ¿»»¿É¹½³ ¸ÅµÃĹ¿½Ã ɹķ Ä·µ ²µµÃÄ À¿Ãù²»µ ±½ÃɵÁ ³¹Öµ½ Ä·µ Ç·¿¹ÇµÃ ±Ö±¹»±²»µ. ™Æ ± ¸ÅµÃĹ¿½ DZ½ ²µ ±½ÃUntitled Exam-2ÿÿÿÿ _CRC321614396819ø{\rtf1\mac {\fonttbl {\f0\fnil Times New Roman;}} {\colortbl \red0\green0\blue0; \red255\green255\blue255;} {\pard\plain\f0\fs24\cf0\ql {\highlight1\b CHEM523 Exam #1 Name: _________________________________________\par \par Section 1. Fun!\par \par Answer the following questions with the beest possible answer given the choices available. If a question can be answered by more than one possible choice, it will say so in the question itself.}}}d“±¼µÃ! ‘½ÃɵÁ Ä·µ Æ¿»»¿É¹½³ ¸ÅµÃĹ¿½Ã ±Ã Ç¿¼À»µÄµ»È ±½´ Ä·¿Á¿Å³·»È ñ À¿Ãù²»µ. ¨¿Å ¼ÅÃÄ ²µ Ç¿½Ç¹Ãµ ±½´ Åõ Ç¿¼À»µÄµ õ½Äµ½ÇµÃ.Untitled Exam-2ÿÿÿÿ _CRC32-1682421284*{\rtf1\mac {\fonttbl {\f0\fnil Times New Roman;}} {\colortbl \red0\green0\blue0; \red255\green255\blue255;} {\pard\plain\f0\fs24\cf0\ql {\highlight1\b Games!\par Answer the following questions as completely and thoroughly sa possible. You must be concise and use complete sentences.}}}8Ö§±Á½±Ö±»µ! ¨¿Å "Áµ ĹÁµ´, ¹Äà »±Äµ, ²ÅÄ ½¿É ¹Ã É·µ½ È¿Å ½µµ´ Ä¿ Ãż¼¿½ ±»» ¿Æ È¿ÅÁ ¼¹³·Ä ±½´ ÇÁÅ÷ Ä·¹Ã Ä·¹½³! § "¼¿½, È¿Å "Öµ ³¿Ä Ä·¹Ã! ‘½ÃɵÁ Ä·µ Æ¿»»¿É¹½³ ¸ÅµÃĹ¿½Ã »µ±Ö¹½³ ½¿ Á¿¿¼ Æ¿Á ´¿Å²Ä ±Ã Ä¿ É·¿ ¹Ã ÃÄÁ¿½³µÁ: ¨¿Å ¿Á Ä·¹Ã µ¾±¼.Untitled Exam-2ÿÿÿÿ _CRC32-580426939™{\rtf1\mac {\fonttbl {\f0\fnil Times New Roman;}} {\colortbl \red0\green0\blue0; \red255\green255\blue255;} {\pard\plain\f0\fs24\cf0\ql {\highlight1\b Carnavale!\par \par You're tired, its late, but now is when you need to summon all of your might and crush this thing! C'mon, you've got this! Answer the following questions leaving no room for doubt as to who is stronger: You or this exam.}}}êàê¬ðÄDifficulty1 2  3_field_sorted1123ÄPage%114 115115117117 118117 119120 121121122, 140 141124 125128 135 135 136 141 142153156156, 161161161 162 166 187195 197196196 197196 198197201-202207, 213 21648 48 4957 58 60 59 61 60 61 73 75 74 778082_field_sorted1114 115115117117 118117 119120 121121122, 140 141124 125128135135 136141 142153156156, 161161161 162166187195 197196196 197196 198197201-202207, 213 21648 48 4957 58 60 59 61 60 61 73 75 74 778082š Topic Amino acidsdBuffering against pH changes in biological systemsrEnzyme kinetics as an approach to understanding mechanism>Examples of enzymatic reactions How enzymes work^Ionization of water, weak acids, and weak bases:Overview of protein structure*Peptides and proteins@Protein denaturation and folding6Protein secondary structureTProtein tertiary and quaternary structures ˆReversible binding of a protein to a ligand: oxygen-binding proteins HWeak interactions in aqueous systems_field_sorted1AMINO ACIDSdBUFFERING AGAINST PH CHANGES IN BIOLOGICAL SYSTEMSrENZYME KINETICS AS AN APPROACH TO UNDERSTANDING MECHANISM>EXAMPLES OF ENZYMATIC REACTIONS HOW ENZYMES WORK^IONIZATION OF WATER, WEAK ACIDS, AND WEAK BASES:OVERVIEW OF PROTEIN STRUCTURE*PEPTIDES AND PROTEINS@PROTEIN DENATURATION AND FOLDING6PROTEIN SECONDARY STRUCTURETPROTEIN TERTIARY AND QUATERNARY STRUCTURESˆREVERSIBLE BINDING OF A PROTEIN TO A LIGAND: OXYGEN-BINDING PROTEINSHWEAK INTERACTIONS IN AQUEOUS SYSTEMSÀ1  4 5_field_sorted1145