PART A: LINEWEAVER-BURK PLOTS

In discussing the properties of an enzyme, certain values, or parameters are determined experimentally under *steady state conditions*. These values are determined through kinetics studies and include:

 V_{max} : The so-called maximal rate of the catalyzed reaction. The enzyme's active site is saturated.

 K_m : The Michaelis constant. The substrate concentration at which the reaction rate is one-half its maximum value. Also known as the turnover number.

These values are determined experimentally by recording the progress of an enzyme-catalyzed reaction using fixed amounts of enzyme and a series of different substrate concentrations.

A typical data set looks table one where V_o is the initial reaction velocity and $[S]_o$ is the substrate concentration.

Table one Steady-state enzyme kinetic data

[S] _o	Vo
(µmol L⁻¹)	$(\mu mol L^{-1} min^{-1})$
0.1	0.3
2.0	5.0
10.0	20.0
20.0	40.0
40.0	64.0
60.0	80.0
100.0	100.0
200.0	120.0
1000.0	150.0
2000.0	155.0

 V_{max} and K_m can be determined from linear regression analysis of a plot of $1/V_o\,vs.\,1/[S]_o$, a so-called Lineweaver-Burk plot.

Figure one

A Lineweaver-Burk plot of enzyme kinetic data.

In a Lineweaver-Burk plot the inverse of the x and y-intercepts represent the kinetics constants K_m and V_{max} respectively.

Use the procedure below and a graphing calculator to determine the kinetics constants for the data in table one.

Procedure

- Enter the data from table one into your graphing calculator.
- Use the calculator to compute the inverse of the data sets entered in the above step and store this data in separate lists. This data represents the inverse values $1/V_o$ and $1/[S]_o$.

DIRECTIONS FOR TI-82/83

 $L_3 = 1/L_1$ $L_4 = 1/L_2$ • Construct a scatterplot of 1/V_o vs. 1/[S]_o.

- Determine the linear regression equation for the graph of $1/V_o$ vs. $1/[S]_o$ and record the equation coefficients.
- 2nd Y=Plots Off ENTER 2nd Y=Plot1 ON \therefore Xlist=L₃ Ylist=L₄ Mark: + ZOOM ZoomStat

STAT CALC LinReg(ax+b) ENTER L₃,L₄ ENTER

• Add the equation to the graph of the data.

- Adjust the graph window to include the x-intercept value.
- Determine the y-intercept value, which represents $1/V_{max}$.
- Calculate V_{max} . (91.80 μ mol L⁻¹ min⁻¹ for the data in table one)
- Determine the x-intercept value which represents $1/K_{m}$.
- Calculate K_{m} . (30.51 μ mol L⁻¹ for the data in table one)

WINDOW Xmin = -Xmax Xscl = Xmax-Xmin/10 Ymin = -Ymax Yscal = Ymax-Ymin/10

GRAPH 2nd TRACE Value X=0		

GRAPH 2nd TRACE Zero Use • and ENTER to set the left bound below the x-intercept.

Use) and ENTER to set the right bound above the x-intercept.

Use the arrow keys to place the cursor close to the x-intercept. and ENTER to guess.

Questions

Determine the kinetics constants for the following sets of data.

Set one

Steady-state enzyme kinetic data

[S] _o	Vo
(µmol L¹)	$(\mu mol L^{-1} min^{-1})$
0.5	50.0
1.0	75.0
2.0	100.0
3.0	112.5
10.0	136.4

Set two

Steady-state enzyme kinetic data

[S] _o	V _o
(µmol L⁻¹)	$(\mu mol L^{-1} min^{-1})$
0.020	0.19
0.025	0.22
0.04	0.32
0.10	0.59
0.20	0.83
0.50	1.17
1.00	1.41
2.00	1.63

PART B: INHIBITION STUDIES

Enzyme catalyzed reaction rates are often affected by substances that inhibitor or interfere with the enzymes interaction with the substrate(s). There are three basic types of inhibition: noncompetitive, uncompetitive, and competitive inhibition.

The type of inhibition can be determined from graphical analysis of experimental data with Lineweaver-Burk plots. Inhibition experiments involve a series of experiments with fixed amount of inhibitor added to varying amounts of substrate. Lineweaver-Burk plots are constructed showing multiple lines for the various inhibitor concentrations.

The inhibition types and their graphical characteristics are summarized below and graphically in figure two.

Inhibition type	Definition	Graphical characteristics
noncompetitive	The inhibitor binds the enzyme at a different site than the substrate causing a conformational change. The conformational change affects the rate of catalysis, but the overall turnoff remains constant.	The slopes of Lineweaver-Burk plots are different, as are the y-intercepts. Yet, the x-intercepts remain constant.
competitive	The inhibitor competes for the enzymes binding site with the substrate. The proportion of substrate molecules bound by the inhibitor reduces the rate of catalysis.	The slopes of Lineweaver-Burk plots are different, yet the y-intercepts are the same.
uncompetitive	The inhibitor binds the active site after the substrate. Binding of the inhibitor can stimulate the binding, but produces a non-productive complex.	The slopes of Lineweaver-Burk plots are the same and both intercepts are different.

Figure two

Lineweaver-Burk plot showing inhibition experiments with fixed amounts of inhibitor added to varying amounts of substrate.

Table two

Enzyme inhibition data

	without inhibitor	with inhibitor
[S] _o µmol L ⁻¹	V _o µmol L ⁻¹ min ⁻¹	$V_o^{}$ μ mol L^{-1} min ⁻¹
0.0000027	11.96	7.80
0.0000045	16.68	10.11
0.0000091	25.88	12.99
0.000027	38.87	16.04
0.000081	46.58	17.41

Use the procedure below and a graphing calculator to determine the type of inhibition for the data in table two.

Procedure

- Enter the data from table two into your graphing calculator.
- Use the calculator to compute the inverse of data sets entered in the above step and store this data in separate lists. This data represents the inverse values $1/V_o$ and $1/[S]_o$.
- Construct two scatterplots of $1/V_o vs. 1/[S]_o$.

DIRECTIONS FOR TI-82/83

2nd
$$Y=$$

Plots Off
ENTER
2nd $Y=$
Plot1
ON
 \therefore Xlist=L₄ Ylist=L₅ Mark: +
Plot2
ON
 \therefore Xlist=L₄ Ylist=L₆ Mark: $\frac{700M}{Z00M}$

- Determine the linear regression equation for the graph of $1/V_0$ vs. $1/[S]_0$ and record the equation coefficients.
- Evaluate the equation coefficients and determine the inhibition type (*uncompetitive* in the case of the data from table two).

Questions

Determine the types of inhibition for the following sets of data:

Set one

Enzyme inhibition data

	without inhibitor	with inhibitor
[S] _o µmol L ⁻¹	$V_o^{}$ $\mu mol L^{-1} min^{-1}$	V_o^{μ} mol L^{-1} min ⁻¹
0.000003	10.4	4.1
0.000005	14.5	6.4
0.00001	22.5	11.3
0.00003	33.8	22.6
0.00009	40.5	33.8

Set two

Enzyme inhibition data

	without inhibitor	with inhibitor
[S] _。 µmol L ⁻¹	$V_{o} \ \mu mol \ L^{-1} \ min^{-1}$	$V_o^{}_{\mu}$ mol $L^{ extsf{-1}}$ min $^{ extsf{-1}}$
0.000003	10.4	2.1
0.000005	14.5	2.9
0.00001	22.5	4.5
0.00003	33.8	6.8
0.00009	40.5	8.1