Mechanisms of Enzyme Action

« Stabilization of the Transition State

* Enormous Rate Accelerations

* Binding Energy of ES

» Entropy Loss and Destabilization of ES
» Types of Catalysis

» Serine Proteases

 Aspartic Proteases

* Lysozyme

Stabilizing the Transition State

« Rate acceleration by an enzyme means that the energy barrier between
ES and EX* must be smaller than the barrier between S and X*

* This means that the enzyme must stabilize the EX* transition state more
than it stabilizes ES
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Rate Acceleration in Enzyme-Catalyzed Reactions

* Mechanisms of catalysis:
—Entropy loss in ES formation
— Destabilization of ES
—Covalent catalysis

—General acid/base catalysis

—Metal ion catalysis

—Proximity and orientation

A Comparison of Enzyme-Catalyzed Reactions and Their Uncatalyzed Counterparts

Reaction

CHy;—O0—P0O,*” + H,0 — CH,OH + HPO,*™
i
HN—C—NH, + 2H,0 + H* —— 2NH, + HCO,~

0
R }l 0—CH,CH, + H,0 — RCOOH + HOCH,CH,

Glycogen + F;— Glycogen + Glucose-1-P
(n) (n=1)
Glucose + ATP — Glucose-6-F + ADP

[
CHyCH,OH + NAD" —— CH,CH + NADH + H*
CO, + H,O — HCO, + HY
Creatine + ATP — CrP + ADP

Enzyme

Alkaline phosphatase

Urease

Chymotrypsin
Glyeogen phosphorylase

Hexokinase

Alcohol dehydrogenase
Carbonic anhydrase

Creatine kinase

Adapted Fromm Koshland, D, 1956, foemel of Cellular Compueraiioe Prysology, Supp. 1, 47217
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Binding Energy of ES

Competing effects determine the position of ES on the energy scale

* Try to mentally decompose the binding effects at the active site into favorable
and unfavorable

* The binding of S to E must be favorable
* But not too favorable!
* K., cannot be "too tight" - goal is to make the energy barrier between ES and

EX¥ small
A E+S
. ES
G
AG,
AG,TAS
Reaction coordinate
x* X
: AGy, ”."J WE i
! EX* EX*
E+S / \ E+P E+S . s pp
ES EP
AGy, AG, + AG,—TAS
ES EP,
No destabilization, Destabilization of ES
thus no catalysis facilitates catalysis



Entropy Loss and Destabilization of ES

raising the energy of ES raises the rate
* For a given energy of EX#, raising the energy of ES will increase the catalyzed rate
* This is accomplished by

—a) loss of entropy due to formation of ES
—b) destabilization of ES by

* strain

« distortion

* desolvation
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Covalent Catalysis

* Enzyme and substrate become linked in a covalent bond at one or more

points in the reaction pathway

» The formation of the covalent bond provides chemistry that speeds the

reaction

Chymotrypsin
Elastase
Esterases
Subtilisin
Thrombin
Trypsin

G-3-P dehydrogenase
Papain

Alkaline phosphatase
Phosphoglucomutase

Phosphoglycerate mutase
Succinyl-CoA synthetase

Aldolase

Decarboxylases

Pyridoxal phosphate-dependent
enzymes
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The Enzyme as Nucleophile
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General Acid-base Catalysis

a proton is transferred in the transition state

* "Specific" acid-base catalysis involves H* or OH- that diffuses into the catalytic
center

 "General" acid-base catalysis involves acids and bases other than H* and OH-
* These other acids and bases facilitate transfer of H* in the transition state

HS8
pH 8 P
- pH7
Buffer Buffer
concentration concentration

Specific acid-base catalysis

General acid-base catalysis

An ionizable group on a protein will be most effective as a H* transfer
agent at or near its pK,

Biochemistry usually happens near pH7, where histidine is the most
effective general acid or base (imidazole pK, = 6)

Reaction

0 0
eHc—0— N0, + MO < HC-0" + HO— No, + H'
Mechanism
0 o~ H* 0
cHC—0—  h-NO, > CHy— C -0 ‘—No, > CHC—0 + HO—{ -NO, + H*
H— 0 0/
HN_ N H H



Low-Barrier Hydrogen Bonds

« Typical O - O distance in C=0--H-O is 2.8 A

«O-His 1A, H-bond is 1.8 A

* Bond order ~0.07

* Typical bond strength 10-30 kJ/mol

* Protein structure can constrain H-bond donor and acceptor to be close

+ O - O distance may be as low as 2.3 A

* When there is no barrier to H exchange, the interaction is a low-barrier H-bond
* Typical LBHB strength may be 60 kJ/mol

/\ 2.8 A 25A 2.3A

0------ H—O O---H---0  O---H---0

 LBHBs require matched donor/acceptor pK_s

* A weak H-bond in E or ES may become a LBHB in an E’'S intermediate or in
EX*



The Serine Proteases

Trypsin, chymotrypsin, elastase, thrombin, subtilisin, plasmin...
« All involve a serine in catalysis - thus the name
« Ser is part of a catalytic triad of ser, his, asp

 Serine proteases are homologous, but locations of the three crucial residues differ
somewhat

* Enzymologists agree, however, to number them always as his57, asp102, ser195
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SubstrateSpecificity in the Serine Proteases

Asp!®9

10



Experimental Evidence for Mechanism

» Most studies use artificial substrates

* p-nitrophenylacetate cleaved to p-nitrophenolate (A

=400 nm)

max

« At high [E], a rapid burst of p-nitrophenolate is observed
* Followed by slower, steady-state hydrolysis
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» Evidence for a 2-step mechanism

Burst-phase kinetics

* Fast first step
* Slower second step

d
CE+A<"EP+H0O >Q+E

» Fast when [E’P] is v. small

 Slows down until E is saturated by E'P

NO,

NO,

o-
A

s

Fast step

CH,

Scrl‘.]ﬁ

C

CH,

Ho  w

\\\ '/,

Slow step

>0 C CH,

O
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Serine Protease Mechanism

A mixture of covalent and general acid-base catalysis
» Asp102 functions only to orient his57
» His57 acts as a general acid and base
» Ser195 forms a covalent bond with peptide to be cleaved
» Covalent bond formation turns sp? C into sp3
* The tetrahedral oxyanion intermediate is stabilized by NH of gly193 and ser195

LEX N X Sas)

13



A Detailed Mechanism for Chymotrypsin
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The Aspartic Proteases

pepsin, chymosin, cathepsin D, renin and  HIV-1 protease
« All involve two asp residues at the active site
» Two asps work together as general acid-base catalysts

» Most aspartic proteases have a tertiary structure consisting of two lobes
(N-terminal and C-terminal) with approximate two-fold symmetry

* HIV-1 protease is a homodimer

HIV Protease

16



Aspartic Protease Mechanism

the pK, values of the asp residues are crucial
* One asp has a relatively low pK_, other has a relatively high pK,

 Deprotonated asp acts as general base, accepting a proton from H,O, forming
OH-in the transition state

» Other asp (general acid) donates a proton, facilitating formation of tetrahedral
intermediate

S
» What evidence exists to support the S

hypothesis of different pK, values for
the two asp residues?

« If activity increases with increasing
pH, there is likely a general base at
the active site

—can’t function when protonated
(low pH)
« If activity decreases with increasing

pH, there is likely a general acid at
the active site

—can’t function when
deprotonated (high pH) pH

* If both, we get a bell-shaped activity
profile

Enzyme activiry

B H

pl

Enzyvme activiiy

AT 4+ H?

4 L + L TP +
B H L . + H AH AT+ H

Pepsin

-
Enzvime activiry

|'pl5l

Enzyme activilty
-

u 1 i 4 4 a3 L1
pH
-Curve fitting allows an estimate of pK_s
*In pepsin, one asp has pK, of 1.4, the other 4.3

*This simple model was modified in 2000...
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A Mechanism for Asp Proteases
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HIV-1 Protease

a novel aspartic protease HIV Protease

* HIV-1 protease cleaves the polyprotein .
products of the HIV genome

* This is a remarkable imitation of
mammalian aspartic proteases

* HIV-1 protease is a homodimer - more
genetically economical for the virus

* Active site is two-fold symmetric

Inhibiticn constamnts
o,

—
* Mechanism doesn’t need different pK_s
i1 4 & i
pH
What does HIV Protease do?
gag pol
mRNA | [ N
Translation
\J
Protein | (gag—pol polyprotein)
Protease
pl7 \/ pll(protease)
Proteins @000 G
p24 p66,/51 (reverse transcriptase)
G i)
plb p32(integrase)
E &
\J
p7 pb

b &



Therapy for HIV?

protease inhibitors as AIDS drugs

« If the HIV protease can be selectively inhibited, then new HIV particles
cannot form

» Several novel protease inhibitors are currently marketed as AIDS drugs
« Many such inhibitors work in a culture dish

* However, a successful drug must be able to kill the virus in a human
subject without blocking other essential proteases in the body
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o H OH l 0 /
HN-— 0 NH NH O
0 o \
Tnvirase Iq“| |||||||| ] Cr { Tmel ]
:J IS
,." . "\._\ "__f" I{ ‘.-"'l’
s 0_ NH | 0 ‘ 0
o ) CH,SO,H J N e M N e A e s
ol .. Mo Lo R A i N Ve N T
H 5 H O OH H
pooom L 4
Hv"’

Viracept (Melfimvir mesylate) Norvir (Ritonavir)




Lysozyme

» Lysozyme hydrolyzes polysaccharide chains and ruptures certain bacterial cells
by breaking down the cell wall

* Hen egg white enzyme has 129 residues with four disulfide bonds

* The first enzyme whose structure was solved by X-ray crystallography (by David
Phillips in 1965)

(:||2[3|| [:l[z(]]i (:llﬂ'(}ll [:I[zl.'l“
0, O 0 P—]
Kon AOKor OReH l/)“ N4
NH NH NH NH
C (8 C 0 [ 0O C O
CH, CH, CH, CH,
NAG NAM NAG NAM
g
v
(:||2[3|| [:l[z(]]i (:]‘Iﬂ'(}ll [:||2(.'l|[
A (‘)\ A O oH A D\ P 0
SoH JOK or NOH JOK or
HO N —”’
NH NH NH NH
C O C 0 [ 0O [ 0O
CH, CH, CH, CH,
NAG NAM NAG NAM

NAG - N-acetylglucosamine
NAM - N-acetylmuraminic acid
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Substrate Analog Studies

» Natural substrates are not stable in the active site for structural studies
* But analogs can be used - like (NAG),
* Fitting a NAG into the D site requires a distortion of the sugar

* This argues for stabilization of a transition state via destabilization (distortion
and strain) of the substrate

CH,OH CH,OH CH,OH
HO HO HO
NH NH NH
C—O C— 0 (o)
CH,4 CH; CHj
NAG NAG NAG

Hydrolysis Rates for Model Oligosaccharides

0
Oligosaccharide Kot (51
(NAG-NAM), 0.5 O
-2 -
(NAG), 0.25
(NAG), 0.033 N )
(NAG), 7x10° g 0
(NAG), 8 x10° °
(NAG), 2.5x 108 -6-
0]
-8 T I |
2 3 4 5
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The Lysozyme Mechanism

« Studies with '®O-enriched water show that the C,-O bond is
cleaved on the substrate between the D and E sites

* This incorporates 80 into C,
* Glu3® acts as a general acid
» Asp®? forms a covalent intermediate

D site E site
P! (0) p L
A0 N
' c, . /
- H2180
\4

D site E site

25



H NHAc NHAC
Ca 1o\ —q
HO €9 o o 0 HO O
o 0 NHAc "o NHAC

R'O \ ~o

oo NAG
NAM  NHAc /l\/ )\/

o AcNH O
asp52 asp52

0
glu35
OH

|
HO ('Q\H &Z/ > product
\O o) /\Y
R'O o
AcNH
AcNH o o
asp52 asp52
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Mechanistic Evidence

can a covalent intermediate be observed?

 How to make the rate of formation of the covalent intermediate faster than its
breakdown?

« Mutate glu52 to gin
« Slows the reaction enough to see intermediates br mass spectrometry

« Deactivate the glycosidic C, to slow hydrolysis of the intermediate sufficiently for
crystallography

Modification of the Substrate Slows Step 2 Even More

1. Formation of the covalent intermediate

OH OH
X ) X
0 0 o\io
C )

2. Rate of hydrolysis can be controlled by X OH
OH ..
o)
RO OH
HO

Electronegative X destabilizes oxocarbenium intermediate

27



Relative intensity

My 14,315

b My 14,719
M, 14,314

My 14,316

My 14,683

P v

My 14,683

—.-»-ﬂ-m-v-lh!i-—-.—

14,000 14,500 15,000
Mr

O

My 14,315 HEWL
OH
HO &
HC»
AcHn  HO
AcHM
M 14,720
HEWL(E35Q)
H
HO OH
H;&’G
BAcHM HO 3
o) o]
M; 14,684 o
HEWL
OH
HO‘& OH
HO
AcHM D@
F
i 1,664 HEWL(E35Q)
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Controls over Enzyme Activity

» Rate slows as product accumulates

» Rate depends on substrate availability

» Genetic controls - induction and repression

* Enzymes can be modified covalently

« Zymogens, isozymes and modulator proteins
* Allosteric effectors and inhibitors

Interconvertible Enzymes

Enzymes regulated by covalent modification
» Converter enzymes
—Protein kinase, protein phosphatase
—Phosphorylation at S,Y,T modulates enzyme activity

ATP ADP
Protein ’\ o)
kinase
Enzyme OH _ E— : > Enzyme O—P—0O"
Protein _

. v Pphosphatase . . 0
Catalytically Catalytically inactive,
active form P H,0 covalently modified form

c (¢ ) AMP  cAMP
R R + cAMP ;ﬁ R ]:/ R +9 C
(T.‘\ \'lp cA \[P
RZC2
inactive Rz—(cAM P),

« Cyclic AMP-dependent protein kinase (PKA) is a R,C, tetramer
* Regulatory (R) subunits bind cAMP (K, = 30 nM)
* cAMP binding releases R subunits from C (catalytic) subunits

29



Zymogens - Inactive Enzyme Precursors

Enzymes regulated by covalent modification

« Zymogens, or proenzymes, are synthesized as
inactive proteins

 Activated by proteolysis

* Irreversible (unlike allosteric regulation or
covalent modification)

—insulin

—digestive tract enzymes
—blood clotting factors
—caspases

Proinsulin Insulin

Connecting
peptide

50

40

Proteolytic Activation of Chymotrypsinogen

Chymotrypsinogen (inactive zymogen)

1 1814[15 | [147 [ 148 245
Cleavage at Arg'®
by trypsin
m-Chymotrypsin (active enzyme)
1 13115 [147 108 | 245
Self digestion at Leu'?,
T)'I'MG, and Asn'*® by
n-chymotrypsin
U] <« —/— » M8
Ser Arg Thr Asn
Y
a-Chymotrypsin (active enzyme)
Leu Ile Tyr Ala
i 16 146 [149 245
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The Blood Clotting Cascade

Intrinsic pathway
Damaged tissue surface

!

Kininogen
Kallikrein Extrinsic pathway

~ Trauma

X1

XI

n o~ a o

(Prothrombin) (Thrombin)
Final I~ s
common (Fibrinogen) (Fibrin)
pathway
XIII,
Cross-linked
fibrin clot
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multimeric enzymes with slightly different subunits
 Lactate dehydrogenase (LDH) exists as 5 different isoenzymes

~A,, A,B, A,B,, AB,, B,

Isoenzymes

* Cells in different tissues express different levels of A and B and so control

the isomeric composition according to their metabolic requirements

(a) The five isomers of lactate dehydrogenase

o5

AB;

O

B,

(b)

Liver

Muscle

White cells

Brain

Red cells

Kidney

Heart

A, A;B A,B, AB; B,

@ -

@ o
o 0
C 0
O 0O
C O
0 o)

o O
8] o
@®
® o
® @
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Allosteric Regulation

* Feedback regulation:

* If F, the essential end product, inhibits enzyme 1, 2, 3 or 4, it blocks its own

synthesis (negative feedback)

« If F is an activator of enzyme 1, 2 etc it will accelerate its own synthesis
(positive feedback)

* Regulatory enzymes (subject to feedback regulation)
—Do not obey Michaelis-Menten kinetics
» Behavior of substrates S
—V, Vs [S] plots are S-shaped (sigmoidal)
—V, is proportional to [S]" where n > 1 (power law)
—Binding of one S to a subunit increases binding of a second S
—This is positive cooperativity
* Regulation by feedback inhibitors
—Does not conform to normal inhibition patterns

* Regulatory effects are achieved by conformational changes when
effector molecules bind

V

max

Hyperbolic .

[S]
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A Model for Allosteric Behavior

* Monod, Wyman, Changeux (MWC) model: allosteric proteins can exist in two
states R (relaxed) and T (taut)

* In this model:
—all the subunits of an oligomer are in the same state
—T state predominates in the absence of substrate S
—S binds much tighterto Rthanto T

» Cooperativity is achieved because S binding increases the population of R,
which increases the sites available to S

* Ligands such as S are positive homotropic effectors

* Molecules that influence the binding of something other than themselves are
heterotropic effectors

A dimeric protein can exist in either
of two conformational states at equilibrium.

< -7‘ ~y ("---""A Ny
| A > ( L
J T ) Ny N
S /} >~ '-_. L A~ \ A
| | S | ~,. \
| ~ x| l.l'- ||
" < - |
| |
."'A — J',_—-")
Iy Ry
T
L= Lis large. (T > > Ry)
Ry
Substrate binding shifts equilibrium
in favor of R.
T (_,-——.'-' T ' « =
/,I [ ~ zi'-.." /_‘} ( | Substrate \/ ( |
-3 R L { \ \ e \ \
| { | \ | | \ \
I | < > | | — y
\ J \ | N | \
/ n... l| . :‘, '._. \ oy ',"
T o5 \ ', - ./
7 ) | X 4
L . L WV Substrate
o ; Sk R bound
e 1
(substrate

binding site)
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(a)

Y 0.5

(b)

L=1000
n=4

[S]

Substrate ._

Ve

[S]

n = number of monomers

<
I

~

kAc!ivator

Activator
h

/< Ry,

.Subslrale

Rias)

A dimeric protein which can exist in
either of two states R and T,
This protein can bind 3 ligands:

1) Substrate (S) W: A positive homotropic
effector that binds
only to R at site S

2) Activator (A) A: A positive heterotropic
effector that binds
only to R at site F

3) Inhibitor (I) Py: A negative heterotropic
effector that binds
only to T at site F

Effects of A:

A+Ry—=Ryy,

Increase in number of
R-conformers shifts R, === T,
so that Ty—= R,

1) More binding sites for S made
available
2) Decrease in cooperativity of

substrate saturation curve, Effector A
lowers the apparent value of L.

[occupied sites]/[total sites]

Inhibitor

Effects of It

L4 To—=Tyyy,

Increase in number of

T-conformers (decrease in Rjas Rg—= T,
to restore equilibrium ).

Thus, I inhibits association of S and A
with R by lowering R;, level. Tincreases
cooperativity of substrate saturation curve,
I raises the apparent value of L.
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* This is a K system
* [S] required for half-maximum velocity K, ; changes in response to effectors
* V. Is constant for A, I, and no A or |

1.0

0

V systems are less common

* K, 5 remains constant in response to effectors

V..« Changes

Vv, Vs [S] plots are hyperbolic, not sigmoidal

R and T have the same affinity for S but different catalytic efficiencies

+A

+1
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