CHEM106 PS-1: Due at the beginning of class on Thursday.

1. Complete these tables; bond angles refer to angles around the central atom.

Molecule	OPF ₃	ClO ₃	ICl ₅	SF ₆	CH ₃ CHO
Number of Valence Electrons					
Lewis Structure (include all nonzero formal charges)					
Electron Arrangement					
Molecular Geometry					
Bond Angle(s)					
Hybridization					
Polar or Nonpolar					
# of sigma (σ) bonds					
# of pi (π) bonds					
Bond Order					

- 2. Draw Lewis structures for each of the following show all bonds, nonbonding pairs, atoms, and nonzero formal charges:
 - a. $N(CH_3)_4^+$
 - b. $[P_2O_7]^{4-}$
 - c. Glycerol
 - d. $CH_3CH_2CH_2CH_2CH_2CH_2COOH$
 - e. $CH_3(C=O)OCH_2CH_2N(CH_3)_3^+$
 - f. CCl₃COOH
 - g. CF₂HCHO
 - h. NH₂NH₂

- **3**. Use the exponential portion of the Arrhenius equation to calculate the fractions of gaseous argon atoms that have a kinetic energy greater than 100 kJ/mole at a temperature of 10,000 K and at a temperature of 298K.
- 4. Sketch a kinetic molecular distribution plot for two temperatures and shade in the areas having a kinetic energy greater than an arbitrary activation energy. Then use this illustration to clearly explain why chemical reactions occur faster at higher temperatures.

- 5. Draw Lewis structures for the given bases and their respective conjugate acids:
 - a. Trimethyl amine
 - b. Cyanide ion
 - c. Hydrogen phosphate ion
- 6. Calculate the amount of energy (J) required to melt 20.0 g of ice at 273.15 K. The enthalpy of fusion for ice is 6.009 kJ/mole.
- 7. For the combustion of methane at a temperature of 298K, write a balanced chemical equation and determine the change in enthalpy, entropy, and Gibbs free energy for this reaction.

8. Calculate the vapor pressure of ethanol at a temperature of 298 K using the Gibbs free energies of formation for C₂H₅OH (l) (-174.78 kJ/mol) and C₂H₅OH (g) (-168.49 kJ/mol). Write an equation for the vaporization process and compare your prediction to the known vapor pressure.