CHEM 310 Final Exam

Dr. Hanna

April 30, 2007
Honor Pledge:
In Part V of the Winthrop University Student Conduct Code, it is stated that "A fundamental tenet of all institutions of higher learning is academic honesty. ... Misrepresentation of someone else's work as one's own is a most serious offense in any academic setting. ... Academic misconduct includes but is not limited to providing or receiving assistance in a manner not authorized by the professor in the creation of work to be submitted for academic evaluation including papers, projects, and examinations ..."

By my signature below, I pledge that I did not commit academic misconduct (cheat) on this examination.

Part 1

\qquad /35

Part 2 \qquad /35

Part 3 \qquad /30

Part 4 \qquad /60

Part 5 \qquad /20

Part 6 \qquad /20

Total /200

Part 1: Nomenclature and Functional Groups (35 pts):

1A. Draw structures corresponding to the following IUPAC names (4 pts each):
i) (E)-3-Methylpent-2-ene
ii) 1,3-Diphenylpropan-2-one
iii) Ethyl hexanoate

1B. Write IUPAC names for the following compounds (indicate stereochemistry where required, 5 pts. each):
i)

ii)

iii)

1C. Propose structures for molecules that fit the following descriptions (2 pts. each):
i) An amide containing 4 carbons
ii) An alkyne containing 5 carbons
iii) A cycloalkene with a trisubstituted double bond
iv) A secondary alkyl halide

Part 2: Structure, Bonding, Stereochemistry, Conformational Analysis (35 pts):

2A. Provide the hybridization of and the approximate bond angles around the circled atom in the following molecules or ions: (4 pts each):
i)

ii)

iii)

2B. Indicate whether the compounds in each pair are identical, constitutional isomers, enantiomers, or diastereomers. (3 pts. each):
i)

and

ii)

and

iii)

2C. The benzyl cation is a resonance stablized intermediate in many organic reactions. Draw three additional resonance forms for the benzyl cation (6 pts):

Benzyl Cation

2D. Circle the more stable conformation in each pair and explain your answer (4 pts each):
i)

ii)

Part 3: Acids and Bases; Structure/Reactivity Relationships (30 pts):

3A. Circle the stronger acid in each pair and explain your answer: (4 pts each):
i)
 or

ii)

iii)

HCl
or
HI
iv)

3B. Rank the following compounds in order of reactivity toward nucleophilic acyl substitution ($1=$ fastest, 3 = slowest) (4 pts):

A
B
C

3C. Rank the following compounds in order of $\mathrm{S}_{\mathrm{N}} 1$ reactivity ($1=$ fastest, $4=$ slowest $)$. Explain your answer (5 pts):
$\mathrm{CH}_{3} \cdot \mathrm{Br}$

A
B

C

D

3D. Rank the following compounds in order of $\mathrm{S}_{\mathrm{N}} 2$ reactivity ($1=$ fastest, $4=$ slowest $)$. Explain your answer (5 pts .):

B

C

D

Part 4: Provide the Reagent(s) or Product(s) (60 pts):
i)

ii)

iii)

iv)

v)

2. $\mathrm{H}_{3} \mathrm{O}^{+}$

vi)

vii)

viii)

ix)

x)

xi)

\square
xii)

xiii)

xiv)

xv)

Part 5: Reaction Mechanisms (20 pts):

5A. Provide complete arrow-pushing mechanisms for the following transformations (5 pts . each):
i)

ii)

iii)

5B. When (R)-3-methylhexan-3-ol is heated in aqueous acid $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$, racemic 3-methylhexan-3-ol is formed. Propose an explanation (5 pts.).

Part 6: Synthesis (20 pts):

Propose a synthesis of each of the following compounds starting from the indicated compound and any other reagents you need (5 pts. each):
i)

ii)

iii)

iv)

