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OThe forkhead box O (FoxO) transcription factor family is a key player in an evolutionary conserved pathway

downstream of insulin and insulin-like growth factor receptors. The mammalian FoxO family consists of
FoxO1, 3, 4 and 6, which share high similarity in their structure, function and regulation. FoxO proteins are
involved in diverse cellular and physiological processes including cell proliferation, apoptosis, reactive oxygen
species (ROS) response, longevity, cancer and regulation of cell cycle and metabolism. The regulation of FoxO
protein function involves an intricate network of posttranslational modifications and protein–protein
interactions that provide integrated cellular response to changing physiological conditions and cues. AKT was
identified in early genetic and biochemical studies as a main regulator of FoxO function in diverse organisms.
Though other FoxO regulatory pathways and mechanisms have been delineated since, AKT remains a key
regulator of the pathway. The present review summarizes the current knowledge of FoxO regulation by AKT
and 14-3-3 proteins, focusing on its mechanistic and structural aspects and discusses its crosstalk with the
other FoxO regulatory mechanisms. This article is part of a Special Issue entitled: PI3K–AKT–FoxO axis in
cancer and aging.
–AKT–FoxO axis in cancer and
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1.1. Identification of mammalian FoxOs

There are 4 mammalian FoxO members designated FoxO1/FKHR/
FoxO1a, FoxO3/FKHRL1/FoxO3a, FoxO4/AFX and FoxO6, sharing high
protein homology (reviewed in [1,2]; for the Fox gene nomenclature
nd 14-3-3 proteins, Biochim. Biophys. Acta (2011),
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see [3]). The first identified mammalian member of FoxO was FoxO1,
designated originally FKHR (forkhead in rhabdomyosarcoma), and
located on chromosome 13 in humans [4]. This transcription factor
was cloned while studying the t(2;13) chromosomal translocation in
rhabdomyosarcoma, identifying a gene fusion of the transcription
factor PAX3 with a protein having homology with transcription
factors sharing the forkhead DNA binding domain. The PAX3/FKHR
fusion was shown later to have oncogenic potential and enhanced
transcriptional activity [5–7]. A subsequent study found that in a
subset of rhabdomyosarcomas showing t(1;13) translocation, FKHR is
found fused to PAX7, which shares high homology with PAX3 [8,9].
AFX (FoxO4) was the second forkhead domain transcription factor
found rearranged in cancers [10]. In acute leukemias, AFX was found
fused with the mixed-lineage leukemia (MLL) zinc finger transcrip-
tion factor due to a t(X;11) translocation. Interestingly, the AFX fusion
occurs in the same region as the FKHR fusion, resulting in a chimeric
transcription factor containing the DNA binding domain of MLL and
the transcription activation domain of AFX. FoxO3 (FKHRL1), located
on chromosome 6, was identified in a study looking for FKHR
homologues using the DNA binding domain of FKHR as the bait and it
shares high homology with FoxO1 [11]. The newest member of the
FoxO family, FoxO6, was identified using a degenerated PCR strategy
and is located on chromosome 1 in humans [12]. FoxO6 is probably
the most distant member of the FoxO family as discussed below.
Though FoxO1/FKHR was identified and cloned in the mid 90s, its
significance and functional aspects were realized only following the
genetic characterization of its nematode homologue, DAF-16.
T
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1.2. DAF-16, the C. elegans FoxO

As mentioned above, a key step in delineating FoxO function came
from the C. elegans genetics field. DAF-16 was originally identified in
genetic analyses of the C. elegans dauer larval stage [13]. The DAF-16
gene was situated downstream of the pheromone receptor DAF-2 [14].
Subsequent studies also connected this pathway to C. elegans longevity,
showing that mutants of DAF-2, resulting in activation of DAF-16, live
longer thannormal animals [15]. Subsequent cloningof theDAF-16gene
U
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Fig. 1. Conserved AKT phosphorylation sites in FoxO proteins. Depiction of mammalian and C
also the locations of the forkhead domain and the nuclear export (NES) and nuclear localiz

Please cite this article as: G. Tzivion, et al., FoxO transcription factors; Re
doi:10.1016/j.bbamcr.2011.06.002
and detailed pathway analysis delineated a signaling pathway starting
from DAF-2 (insulin receptor like gene) and going through AGE1
(PI3-Kinase) and AKT to DAF-16 [16–18]. These studies underlined the
significance of thepathway formetabolismand longevity control aswell
as the key role of DAF-16 in the pathway and the potential of its
mammalian homologues to mediate signals from the insulin receptor.
The studies indicated onnegative control of DAF-16 function byAKTand
also recognized the homology of DAF-16 to themammalian FKHR gene,
identifying three potential AKT phosphorylation sites conserved
between DAF-16 and FKHR (Fig. 1). Since specific insulin-regulated
transcription factors have not been identified at that time, the DAF-16
findings prompted a glut in studies focusing on the regulation of FKHR
(FoxO) proteins by AKT in mammalian systems [19–27].
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F2. Regulation of FoxO proteins by AKT

2.1. Historical perspective

Thefirst study showing regulationof amammalianFoxObyAKTwasa
study by Brunet et al. published in early 1999 [19]. This study
demonstrated that AKT can phosphorylate FoxO3/FKHRL1 on the three
predicted sites: T32, S253 and S315 both in vitro and in vivo and that this
phosphorylation resulted in the nuclear exclusion of FoxO3. Accordingly,
cell treatment with PI3K agonists such as IGF-1 or serum induced FoxO3
phosphorylation and nuclear exclusion while PI3K inhibition induced
FoxO3 dephosphorylation and nuclear accumulation. The study also
demonstrated that T32 and S253 phosphorylations mediated FoxO3
binding to the adapter protein 14-3-3z, suggesting that 14-3-3 proteins
facilitated FoxO3 nuclear/cytoplasmic shuttling. The study also identified
DNA sequenceswithin the IGFBP1 (insulin responsive sequence, IRS) and
FAS ligand (forkhead responsive element, FHRE) promoters that can
mediate FoxO3 binding and showed that AKT phosphorylation regulates
the transcriptional activity of FoxO3. Finally, the study showed that FoxO3
can mediate survival signaling downstream of AKT and that its over-
activation can induce apoptosis. A study by Kops et al [20], appearing at
the same time as the above study, demonstrated a similar regulation of
FoxO4/AFX phosphorylation and transcriptional activity by AKT. These
. elegans FoxO isoforms and the corresponding AKT phosphorylation sites. Indicated are
ation sequence (NLS).

gulation by AKT and 14-3-3 proteins, Biochim. Biophys. Acta (2011),
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studies were followed by numerous studies demonstrating the ability of
AKT to phosphorylate FoxO1/FKHR and the other FoxO members,
corroborating this key regulatory mechanism [21–27]. These studies
were consequently confirmed also with DAF-16 and Drosophila FoxO,
demonstrating the conservation of this regulatory mechanism through
evolution [28–35].

2.2. Mechanistic aspects of FoxO regulation by AKT

As illustrated in Fig. 1, the regulatory AKT phosphorylation sites are
shared by all mammalian FoxO members and are conserved through
evolution. All FoxO proteins, with the exception of FoxO6, contain three
AKT phosphorylation sites (FoxO6 lacks the carboxy terminal site [12]).
Notably however, The AKT consensus phosphorylationmotif defined by
Alessy et al, RxRxxS/T [36,37], can be phosphorylated also by other AGC
family kinases [38] such as PKA, PKC, SGK and PAK family kinases.
Indeed, SGK was shown to phosphorylate FoxO3 on the AKT
phosphorylation sites, though with different site preference than AKT:
both phosphorylated the T32 site equally well, however, SGK showed
preference for the S315 site andAKT for the S253 site [39]. PKAawasalso
shown recently to phosphorylate FoxO1 on the AKT phosphorylation
sites in vascular endothelial cells [40]. To what extent other AGC family
kinases participate in FoxO regulation throughphosphorylation of these
sites and under what cellular conditions remains to be determined.

Regarding the functional consequences of AKT phosphorylation, it
appears that these phosphorylations serve primarily as docking points
for 14-3-3 binding and do not affect protein function directly, e.g. DNA
binding affinity. This notionwas inferred initially fromDAF-16 studies
and later from mammalian FoxO studies [28,41–43]. Crystallography
studies also do not suggest direct effect of these phosphorylations on
FoxO protein function [44]. However, since 14-3-3 deficient models
are lethal it has been difficult to distinguish between direct effects of
phosphorylation versus 14-3-3-mediated effects. One approach to
address this question is discussed bellow in Section 3.

Other open questions relating to mechanistic aspects of FoxO
regulation by AKT relate to the cellular compartment of the
phosphorylation event, the binding of AKT to FoxO and isoforms
specificity. Regarding the phosphorylation location, though initial
studies on AKT activation offered a model where AKT activation
occurs at the plasma membrane followed by translocation of active
AKT to the nucleus, the current view is that AKT can be also directly
activated in the nucleus by nuclear pools of PI3K involving
phosphorylation by PDK1 and DNA-PK [45–47]. Thus, it is plausible
that FoxO proteins can be phosphorylated both in the cytoplasm and
nucleus and that for different conditions different pools of AKT may
target FoxO proteins at different locations. It is established however
that FoxO proteins phosphorylated at the AKT sites can be detected
primarily in the cytoplasm, while nuclear FoxO is devoid of
phosphorylation at these sites, suggesting that even if FoxO proteins
are being phosphorylated in the nucleus, their half-life in this
compartment is short.

As to AKT-FoxO interaction, it has been observed that endogenous
AKT and FoxO can be found in a complex [48], however, the interaction
between the two proteins has not been studied in detail. In this regard,
the binding of AKT has not been thoroughly investigated to any of its
numerous targets [38,49,50]. A recent study from our group addressed
this point to some extent, establishing that the three AKT phosphory-
lationmotifs are not involved inAKT-FoxO interaction, suggesting to the
existence of a distant docking point on FoxOs for AKT binding that
remains to be defined [51].

Little is known about the preference of AKT isoforms to specific
FoxO isoforms. Isoform specific AKT knockouts models have not
been thoroughly investigated yet as to the status of specific FoxO
isoform phosphorylation levels or activity. Knockdown of either
AKT1 or AKT2 in Hella cells seems to reduce FoxO3 phosphorylation
equally well [43].
Please cite this article as: G. Tzivion, et al., FoxO transcription factors; Re
doi:10.1016/j.bbamcr.2011.06.002
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3. Regulation of FoxO proteins by 14-3-3

14-3-3 proteins are a family of evolutionary conserved modulator
proteins that regulate multiple signaling pathways in the cell through
binding to specific Ser/Thr-phosphorylated motifs on target proteins
(reviewed in [52–54]). Mammals express 7 14-3-3 isoforms that can
form homo and hetero dimers. Known 14-3-3 binding sites include two
definedmotifs: RSxpS/TxP (mode 1) and RxxxpSxP (mode 2) as well as
several other phosphorylated sequences and somenon-phosphorylated
ones [55–58]. Upon target binding, usually as a dimer, 14-3-3 proteins
can affect the function of the target protein by several means, including
directly modulating the enzymatic activity of the target protein, its
protein stability, cellular localization or its association with other
proteins [54,59,60]. Besides FoxOproteins,manyother AKT targets have
been shown to be regulated by 14-3-3, including BAD [61], TSC2 [62],
ataxin-1 [63], p27Kip1 [64], YAP [65], tuberin [66], PRAS40 [67], MDMX
[68] and SRPK2 [69]. This sharing of targets is due to the overlap
between the recognition motifs of AKT and 14-3-3: RxRxxS/T for AKT
and RSxpS/TxP for 14-3-3.

3.1. Regulation of FoxO localization

The initial work by Brunet et al [19] demonstrated that two of the
three AKT phosphorylation sites on FoxO3, T32 and S253 cooperatively
mediated the binding to the 14-3-3z isoform. The authors proposed that
14-3-3 bindingmight be responsible for the regulation of FoxO3 nuclear
localization, as AKT activation induced FoxO3 accumulation in the
cytoplasm while its inhibition resulted in FoxO3 accumulation in the
nucleus. Accordingly, FoxO3 mutants lacking the AKT phosphorylation
sites were strictly nuclear. This initial observation was further
investigated in a follow up study demonstrating that 14-3-3 proteins
contribute to FoxO3 accumulation in the cytoplasm following phos-
phorylation by AKT, both by increasing nuclear export of FoxO3,
functioning in conjunction with two nuclear export sequences present
at the carboxy terminus of FoxO3 and by inhibiting FoxO3 reimport to
the nucleus by potentially masking two nuclear localization sequences
(NLS) present near the S253 14-3-3 binding site (248RRR250 and
269KKK271) [41]. The ability of 14-3-3 to confer conformational changes
on FoxO NLS has been also demonstrated using crystallography
structural studies, using FoxO4 NLS as a model [70].

While phosphorylation mediates the binding of 14-3-3, dephos-
phorylation mediates the dissociation of the complex. PP2A has been
implicated in FoxO3 dephosphorylation at the T32 and S253 sites
[43,71]. PP2A inhibitors or its knockdown can stabilize FoxO3
phosphorylation in the presence of AKT inhibition [43]. This effect
also results in stabilization of the FoxO3-14-3-3 complex. In addition,
PP2A inhibition attenuates FoxO3 relocalization to the nucleus in
response to AKT inhibition as well as increased FoxO3 transcriptional
activity. Interestingly, this study suggests that PP2A is not responsible
for regulating FoxO1 or FoxO4, pointing out to isoform specific
regulation by phosphatases. Though multiple 14-3-3 isoforms have
been shown to bind and regulate FoxO proteins, including 14-3-3
sigma, epsilon [41,72] and zeta [19,73] it has not been established
whether there are subtle differences in FoxO regulation by the
different isoforms, especially since 14-3-3 proteins form both homo
and hetero-dimers.

3.2. Regulation of FoxO DNA binding

The effect of AKT phosphorylation through induction of 14-3-3
binding on FoxO DNA binding was described initially with DAF-16
[28]. This study reconstructed in vitro DAF-16 DNA binding and
demonstrated that 14-3-3 binding to DAF-16 completely blocked the
ability of DAF-16 to bind DNA. This study also demonstrated that AKT
phosphorylation in-itself did not have an effect on DAF-16 DNA
binding but required the binding of 14-3-3 to the phosphorylated
gulation by AKT and 14-3-3 proteins, Biochim. Biophys. Acta (2011),
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Fig. 2. FoxO proteins are regulated by multiple Ser/Thr kinases. Depiction of the
reported FoxO phosphorylation sites and the kinases that can phosphorylate these sites.
See text for more detail.
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sites to block the DNA binding. This inhibition required a dimeric
14-3-3, suggesting that a 14-3-3 dimer through simultaneous binding
to the T32 and S253 sites could mask the forkhead DNA binding
domain. This notion was proved in later studies with mammalian
FoxO4 and FoxO3, demonstrating the ability of 14-3-3 to mask the
DNA binding domain of FoxO [42,44,74,75]. These studies also
confirmed that AKT phosphorylation in-itself does not confer
conformation changes in the DNA binding domain that could affect
DNA binding, rather, the generation of the 14-3-3 binding sites is the
critical effector of the phosphorylation event (for more details see the
review by Obsil et al in this issue [76]). Other posttranslational
modifications of FoxO1 were reported however to affect FoxO DNA
binding, for example, acetylation and phosphorylation by MST1 [77].
Interestingly, it appears that the PI3K-AKT pathway regulates FoxO
DNA binding and transcriptional activity also in a FoxO phosphory-
lation-independent manner, since FoxO mutants lacking the AKT
phosphorylation sites, though constitutively localize to the nucleus,
have low DNA binding and transcriptional activity under conditions of
high PI3K-AKT activity [28]. This observation suggests to the existence
of a PI3K-AKT-regulated FoxO cofactor/s required for high affinity
DNA binding and transcriptional activity.

3.3. Regulation of FoxO transcriptional activity and protein stability

The consequence of FoxO phosphorylation by AKT and concomitant
binding of 14-3-3 is reduced FoxO transcriptional activity [19,28]. This
result represents probably the sum of limited FoxO presence in the
nucleus and its reduced DNA binding activity, however, since FoxO
proteins have been shown to affect transcription also by serving as
cofactors for other transcription factors [1,78,79], it is plausible that
14-3-3 bidingmay interferewith the ability of FoxO to bind other target
proteins. This point is of importance since FoxO proteins have been
shown to participate in several important transcriptional complexes, for
example, with estrogen receptor [80–82], p53 [83,84], myc [85], RUNX1
[86], Smad3/4 [87] and Hif-1-a [88]. In this regard, the ability of 14-3-3
to affect its target's participation in protein complexes is a well-
documented phenomenon [54,60]. As regards the effect of 14-3-3
binding on the ability of FoxO proteins to interact with transcriptional
regulators, the available data is scarce. Of note, an initial report
suggesting that AKT phosphorylation/14-3-3 binding primarily regu-
lates DNA binding but not transcriptional activity per se, could be
somewhat misleading, since the fragment used in this study for
examining the transcriptional activity of FoxO was missing the 14-3-3
binding sites, thus it didnot provide a conclusive informationon the role
of 14-3-3 binding in regulating FoxO transcriptional activity in the
context of full-length FoxO [28]. A separate study suggested also that
FoxO1 transcriptional activity could be regulated by insulin indepen-
dent of its DNA binding region and phosphorylation by AKT [89,90].

14-3-3 proteins have been shown to affect the stability of several of
their target proteins as well the half-life of the phosphorylated form,
suggesting that it can protect the target protein from both degradation
and dephosphorylation [52,54,60,91–94]. Indeed, 14-3-3 has been
shown to protect FoxO3 dephosphorylation at the AKT sites, which is
mediated by PP2A [43]. Though there is no published data regarding the
effect of 14-3-3 binding on FoxO protein stability, when one examines
the available literature, it couldbenoticed that FoxOmutants lacking the
AKT phosphorylation sites show significantly lower steady-state
expression levels than wildtype FoxOs [19,23,95]. Our recent results
confirm this observation by demonstrating that increased 14-3-3
expression enhances the expression levels of both total FoxO protein
and its phosphorylated form through a mechanism that involves both
protection from dephosphorylation and degradation [51]. This function
of 14-3-3 suggests that availability of unbound 14-3-3 in the cell may
dictate the fate and dynamics of phosphorylated FoxO proteins toward
either fast recycling/reshuttling to the nucleus, stabilization in the
cytoplasm or degradation. The abundance of binding-capable 14-3-3 in
Please cite this article as: G. Tzivion, et al., FoxO transcription factors; Re
doi:10.1016/j.bbamcr.2011.06.002
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the cell is tightly regulated based on cell cycle stage and environmental
conditions, for example by the regulation of its availability through
interaction with intermediate filaments during cell cycle progression
[54,60,96–99], phosphorylation by stress-activated kinases, such as JNK
[73,100,101], or kinases that abrogate 14-3-3 dimerization such as PKA
[102], SDK [103] and MAPKAPK2 [104]. Thus, it is plausible that the
abundance of binding-capable 14-3-3 in the cell could dictate FoxO
protein levels and the magnitude of their activation, allowing fine-
tuning of the pathway based on changing cell conditions [51].

4. Cross-talk with other pathways

Other mechanisms besides the established AKT-14-3-3 system
have been shown to regulate FoxO functions and can directly
modulate FoxO function with some of them also cross talking with
the AKT-14-3-3 pathway. These regulatory mechanisms include
additional phosphorylation events (Fig. 2), acetylation, methylation
and ubiquitination [1,105,106]; see also Dobson, M. and Tzivion, G.
FoxO3. UCSD-Nature Molecule Pages (2011): http://www.signaling-
gateway.org/molecule/query?afcsid=A000945 (doi:10.1038/mp.
a000945.01).

4.1. Stress-activated kinases and other phosphorylation events

FoxO proteins are phosphorylated on multiple sites besides the
discussed AKT phosphorylation sites. These include, S207,
S295/345/426, S413/588/626, and S644 in FoxO3 as well as S249,
S322/325 and S329 in FoxO1 and T447/451 in FoxO4 (Fig. 2). The
phosphorylation at S207 on FoxO3 is mediated by MST1 and is
induced by oxidative stress [107]. This phosphorylation reduces
FoxO3 binding with 14-3-3 and results in increased FoxO activity and
nuclear localization. Similar results were obtained with DAF-16 and
FoxO1 [107–109]. The phosphorylation cluster at FoxO3
S295/345/426 is targeted by ERK-1/2 andmediatesMDM2-dependent
ubiquitination and protein degradation [110,111]. S413/588/626 are
targeted by AMPK in response to nutrient deprivation and this
phosphorylation positively regulates FoxO transcriptional activity,
without affecting localization or DNA binding directly [112]. S644 is
targeted by IKKb and this phosphorylation inhibits FoxO3 function by
increasing its nuclear exclusion and degradation [113,114]. S249 of
FoxO1, which is located within a nuclear localization sequence (NLS)
gulation by AKT and 14-3-3 proteins, Biochim. Biophys. Acta (2011),
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is targeted by CDK2 and its phosphorylation induces the nuclear
exclusion of FoxO1, possibly through interfering with the function of
the NLS [115]. S322/325 of FoxO1 are targeted by CK1 and facilitate
FoxO1 nuclear export [116,117]. S329 of FoxO1 is targeted by DYRK1
and this phosphorylation increases FoxO1 cytoplasmic localization
[118]. T447/451 of FoxO4were identified as JNK phosphorylation sites
and their phosphorylation in response to oxidative stress or TNF
results in FoxO4 translocation to the nucleus and increased transcrip-
tional activity in a manner that seems independent of 14-3-3 binding
or phosphorylation by AKT [119,120].

4.2. FoxO regulation by reversible acetylation

Several studies described the acetylation of FoxO proteins at sites
corresponding to K242, K245 and K262 of FoxO1 [121,122]. These
acetylations are mediated by CBP/P300 and PCAF and modulate FoxO
activity (for an update review see the article in this section by Daitoku
et al [123]). There is some controversy however, regarding the exact
effect of acetylation on FoxO activity: some of the result point to
increased FoxO activity while other to decreased activity. This
controversy if further complicated by the fact that while FoxO
acetylation itself may be inhibitory, recruitment of CBP/P300 to
promoter regions by FoxO induces histone acetylation, which serves
as a positive signal for transcription initiation. Furthermore, FoxO
acetylation was suggested to reduce DNA binding and to increase its
phosphorylation at the S256 site by AKT, again, providing negative
regulation [124]. FoxO deacetylation involves both class-I histone
deacetylases and the class-III, NAD-dependent histone deacetylases
designated sirtuins. Sirt1, 2 and 3 all have been shown to bind FoxO
proteins and induce their deacetylation. The role of sirtuins and FoxO
deacetylation in FoxO function, however, is also controversial,
with results suggesting both negative and positive effects [121–
123,125,126]. It is also suggested that some FoxO target genes,
especially genes related to cell cycle control and senescence, are up-
regulated while pro-apoptotic genes are down-regulated [122].
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FoxO3
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Fig. 3. Regulation of FoxO proteins by AKT and 14-3-3. In growth factor-stimulated cells AKT
binding blocks FoxO DNA binding and accelerates its nuclear export while inhibiting import.
Stress-activated kinases such as JNK and sphingosine-dependent kinase (SDK) can phosph
filaments (IF), such as vimentin and keratins can sequester 14-3-3 proteins and limit their
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4.3. FoxO regulation by methylation and ubiquitination

FoxO protein levels are mediated among others by ubiquitin-
dependent protein degradation [105] (for recent review see also the
article by Huang and Tindall in this issue [127]). Some of the signals that
induce FoxO ubiquitination and degradation include phosphorylation
by AKT, ERK-1/2 and IKK. The identified E3 ligases for FoxO proteins
include SKP2 [128], which binds AKT-phosphorylated FoxO1 at Ser 256
and MDM2, which binds ERK-phosphorylated FoxOs [110,111,129].
Interestingly,MDM2 can both induce FoxOmono-ubiquitination aswell
as its poly-ubiquitination. Mono-ubiquitination in contrast to poly-
ubiquitination, which targets FoxO for degradation, results in FoxO
translocation to the nucleus and increased transcriptional activity [127].
Our recent finding showing FoxO3 stabilization by 14-3-3 offers a cross
talk between 14-3-3 binding to AKT-phosphorylated FoxO and its
degradation [51]. It remains to be examined whether 14-3-3 binding
interferes with FoxO association with SKP2 or other degradation
mechanisms.

Another FoxO post-translational modification that was shown to
cross talk with the AKT/14-3-3 FoxO regulatory mechanism is arginine
methylation [106]. Yamagata et al reported FoxO1 methylation at Arg
248 and 250,within theAKTphosphorylationmotif, demonstrating that
this methylation interfered with the ability of AKT to phosphorylate
S253 (these sites correspond to R250/252/S256 in human FoxO1). This
study also showed that the arginine methyl-transferase PRMT1
mediated the observed FoxO1methylation and that PRMT1 knockdown
resulted in decreased FoxO1 function through its increased exclusion
from the nucleus and protein degradation.

5. Conclusions and future perspectives

FoxO proteins represent an evolutionary conserved pathway that
serves to coordinate cellular responses to changing environmental
conditions. Through transcriptional regulation of a large list of target
genes and interactions with a vast array of transcriptional regulators
d Cells

FoxO3
P P P

14-3-3
-3-3

FoxO3

JNK/IF/SDK

phosphorylation of FoxO proteins generates binding points for 14-3-3 proteins. 14-3-3
In the cytoplasm, 14-3-3 binding attenuates FoxO dephosphorylation and degradation.
orylate 14-3-3 proteins and prevent its binding to target proteins. Also, intermediate
availability to other target proteins. See text for more details.
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they affect multiple cellular functions such as cell cycle regulation,
apoptosis and cellular metabolism. They can integrate signals coming
from the PI3K-AKT pathway with various stress signals mediated
through JNK, MST1 or IKK (Fig. 3). Our understanding of this complex
network and tight regulation is probably at its beginning and will
require much more work to fully unfold this pathway. Some of the
remaining questions include the identification of the full spectra of
direct FoxO target genes, comprehensive determination of FoxO
interacting proteins and elucidation of isoform specific functions of
the four FoxO family members.
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