Inorganic Chemistry Laboratory

Lab 7
Experiment 22 (p.219)

Amino Acid Complexes: Stability constants of $\mathrm{Ni}(\text { glycinate })_{\mathrm{n}}{ }^{(2-n)+}$

Acid-Base Chemistry of Glycine

Glycine is an example of a zwitterion.
What is a zwitterion?

A molecule that contains a (+) and (-) electrical charge at different location within the molecule

Glycinate Titration

$$
\begin{gathered}
\mathrm{HNO}_{3} \text { is a Strong Acid! } \\
\mathrm{HNO}_{3} \rightarrow \mathrm{H}^{+}+\mathrm{NO}_{3}^{-} \\
{\left[\mathrm{H}^{+}\right]=\left[\mathrm{HNO}_{3}\right]} \\
p H=-\log (0.005)=2.3
\end{gathered}
$$

How will the pH respond when glycinate is titrated into the solution?

Glycinate Titration

$$
\begin{gathered}
\mathrm{HNO}_{3} \text { is a Strong Acid! } \\
\mathrm{HNO}_{3} \rightarrow \mathrm{H}^{+}+\mathrm{NO}_{3}^{-} \\
{\left[\mathrm{H}^{+}\right]=\left[\mathrm{HNO}_{3}\right]} \\
p H=-\log (0.005)=2.3
\end{gathered}
$$

How will the pH respond when glycinate is titrated into the solution?

Glycinate Titration with Nickel

What is the pH of this solution?
HNO_{3} is a still a Strong Acid!

$$
\begin{gathered}
{\left[\mathrm{H}^{+}\right]=\left[\mathrm{HNO}_{3}\right]} \\
p H=-\log (0.005)=2.3
\end{gathered}
$$

How will glycinate interact with Ni^{2+} ?

$M X^{+}$
$M X_{2}$
MX_{3}

Ni^{2+}-Glycinate Interactions

MX^{+}

$M X_{2}$

$\mathrm{MX}_{3}{ }^{-}$

Ni^{2+}-Glycinate Interactions

$M X_{2}$

$$
\beta_{1}=\frac{\left[M A^{-}\right]}{\left[M^{2+}\right]\left[A^{-}\right]}
$$

$\mathrm{MX}_{3}{ }^{-}$

$$
\beta_{3}=\frac{\left[M A_{3}^{-}\right]}{\left.\left[M^{2+}\right] A^{-}\right]^{3}}
$$

The Effect of Ni^{2+} on pH

Consider the simple glycine (HA) dissociation reaction:

$$
\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-} \quad K_{a}=\frac{\left[H^{+} \backslash A^{-}\right]}{[H A]}
$$

$$
A_{t o t}=[\mathrm{A}-]+[\mathrm{HA}]
$$

So why does Ni^{2+} influence this reaction?

Ni^{2+} preferentially binds to the base form (A^{-})

 which alters the apparent K_{a} according to mass action (LeChatlier's Principle)

$$
A_{t o t}=[\mathrm{A}-]+[\mathrm{HA}]+\left[\mathrm{MA}^{+}\right]+\left[\mathrm{MA}_{2}\right]+\left[\mathrm{MA}_{3}^{-}\right]
$$

Equilibrium Theory Approach

What we know.....
$M_{\text {tot }}, H_{\text {tot }}$ and $A_{\text {tot }}$ at any point in the titration
Glycinate is your titrant
pH at any point in the titration

$$
M_{1} V_{1}=M_{2} V_{2}
$$

$$
\begin{array}{r}
\text { This is what you measure } \\
A_{\text {tot }}=[\mathrm{A}-]+[\mathrm{HA}]+\left[\mathrm{MA}^{+}\right]+\left[\mathrm{MA}_{2}\right]+\left[\mathrm{MA}_{3}^{-}\right]
\end{array}
$$

Equilibrium Expressions that describe these concentrations

$$
\begin{array}{cccc}
\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-} & \mathrm{A}^{-}+\mathrm{M}^{2+} \rightleftharpoons \mathrm{MA}^{+} & 2 \mathrm{~A}^{-}+\mathrm{M}^{2+} \rightleftharpoons \mathrm{MA}_{2} & 3 \mathrm{~A}^{-}+\mathrm{M}^{2+} \rightleftharpoons \mathrm{MA}_{3}^{-} \\
K_{a}=\frac{\left[H^{+}\left\lceil A^{-}\right]\right.}{[H A]}=2.5 \times 10^{-10} & \beta_{1}=\frac{\left[M A^{-}\right]}{\left.\left[M^{2+}\right] A^{-}\right]} & \beta_{2}=\frac{\left[M A_{2}\right]}{\left.\left[M^{2+}\right] A^{-}\right]^{2}} & \beta_{3}=\frac{\left[M A_{3}^{-}\right]}{\left[M^{2+} \llbracket A^{-}\right]^{3}}
\end{array}
$$

Equilibrium Theory Approach

Fractional Saturation (ñ or θ)
The total number of ligands bound per metal ion

$$
A_{t o t}=[\mathrm{A}-]+[\mathrm{HA}]+\left[\mathrm{MA}^{+}\right]+\left[\mathrm{MA}_{2}\right]+\left[\mathrm{MA}_{3}^{-}\right]
$$

[Bound] =
[Metal] =

$$
\theta=\frac{\left[M A^{-}\right]+2\left[M A_{2}\right]+3\left[M A_{3}\right]}{\left[M^{2+}\right]+\left[M A^{-}\right]+\left[M A_{2}\right]+\left[M A_{3}\right]} \longrightarrow \theta=\frac{\beta_{1}\left[A^{-}\right]+2 \beta_{2}\left[A^{-}\right]^{2}+3 \beta_{3}\left[A^{-}\right]^{3}}{1+\beta_{1}\left[A^{-}\right]+\beta_{2}\left[A^{-}\right]^{2}+\beta_{3}\left[A^{-}\right]^{3}}
$$

Equilibrium Theory Approach

$$
\begin{aligned}
& \text { Our goal is to cast } \theta \text { in terms of known values } \\
& \qquad \theta=\frac{\beta_{1}\left[A^{-}\right]+2 \beta_{2}\left[A^{-}\right]^{2}+3 \beta_{3}\left[A^{-}\right]^{3}}{1+\beta_{1}\left[A^{-}\right]+\beta_{2}\left[A^{-}\right]^{-2}+\beta_{3}\left[A^{-}\right]^{3}} \\
& \left.\left[A^{-}\right]=\frac{K_{a}}{\left[H^{+}\right]}\right]\left(C_{H}+\left[O H^{-}\right]-\left[H^{+}\right]\right)
\end{aligned}
$$

$\mathrm{C}_{\mathrm{H}} \rightarrow\left[\mathrm{H}^{+}\right]$from original HNO_{3} solution

$$
\theta=\frac{A_{t o t}-\left(1+\begin{array}{c}
K_{a} \\
{\left[H^{+}\right]}
\end{array}\right)\left(C_{H}+\left[O H^{-}\right]-\left[H^{+}\right]\right)}{M_{t o t}}
$$

Graphical Approximation of K_{n}

How are pKa values approximated from a pH titration?
pH @ $1 / 2$ Equivalence Point

$$
p H=p K_{a}+\log \frac{\left[A^{-}\right]}{[H A]} \quad \mathrm{pH}
$$

$$
\theta=\frac{[H X]}{[X]_{t o t}}
$$

Graphical Approximation of K_{n}

$p K_{1}=-\log K_{1}$ $p K_{2}=-\log K_{2}$ $p K_{3}=-\log K_{3}$

Graphical Determination of β_{n}

$$
\theta=\frac{\beta_{1}\left[A^{-}\right]+2 \beta_{2}\left[A^{-}\right]^{2}+3 \beta_{3}\left[A^{-}\right]^{3}}{1+\beta_{1}\left[A^{-}\right]+\beta_{2}\left[A^{-}\right]^{2}+\beta_{3}\left[A^{-}\right]^{3}}
$$

This expression can be rearranged to generate a less complex polynomial:

$$
\frac{\theta}{(1-\theta)\left[A^{-}\right]}=\frac{(3-\theta)\left[A^{-}\right]^{2}}{(1-\theta)} \beta_{3}+\frac{(2-\theta)\left[A^{-}\right]}{(1-\theta)} \beta_{2}+\beta_{1}
$$

What happens at very low $\left[A^{-}\right]$?

$$
\frac{\theta}{(1-\theta)\left[A^{-}\right]}=\frac{(2-\theta)\left[A^{-}\right]}{(1-\theta)} \beta_{2}+\beta_{1}
$$

Graphical Determination of β_{n}

$$
\frac{\theta}{(1-\theta)\left[A^{-}\right]}=\frac{(3-\theta)\left[A^{-}\right]^{2}}{(1-\theta)} \beta_{3}+\frac{(2-\theta)\left[A^{-}\right]}{(1-\theta)} \beta_{2}+\beta_{1}
$$

This expression can be further rearranged to generate a less complex polynomial:

$$
\frac{\theta-(1-\theta) \beta_{1}\left[A^{-}\right]}{(2-\theta)\left[A^{-}\right]^{2}}
$$

$$
\frac{\theta-(1-\theta) \beta_{1}\left[A^{-}\right]}{(2-\theta)\left[A^{-}\right]^{2}}=\frac{(3-\theta)\left[A^{-}\right]}{(2-\theta)} \beta_{3}+\beta_{2}
$$

Experimental Considerations

$0.1 \mathrm{M} \mathrm{KNO}_{3}$
5 mM HNO
5 mM Ni

Prepare 200 mL of this solution
***Nickel is a carcinogen! ***

Titrate glycinate into Ni solution in 0.2 mL increments.
Record pH for every aliquot.
......Hope you liked Chemometrics.....

How to start your spreadsheet

$$
\frac{\theta}{(1-\theta)\left[A^{-}\right]}=\frac{(3-\theta)\left[A^{-}\right]^{2}}{(1-\theta)} \beta_{3}+\frac{(2-\theta)\left[A^{-}\right]}{(1-\theta)} \beta_{2}+\beta_{1}
$$

What do you need to solve for β_{n} ?

$$
\left[A^{-}\right]=\frac{K_{a}}{\left[H^{+}\right]}\left(C_{H}+\left[O H^{-}\right]-\left[H^{+}\right]\right)
$$

$$
\theta=\frac{A_{t o t}-\left(1+\frac{K_{a}}{\left[H^{+}\right]}\right]\left(C_{H}+\left[O H^{-}\right]-\left[H^{+}\right]\right)}{M_{t o t}}
$$

Injection \# Volume $\begin{array}{llllll} & \mathrm{A}_{\text {tot }} & \mathrm{pH} & {\left[\mathrm{H}^{+}\right] \quad\left[\mathrm{OH}^{-}\right]} & {[\mathrm{A}-]} & \theta\end{array}$

