Lab 8
Experiment 12 (p.117)

The Paramagnetic Complex Mn(acac)$_3$
Electron Configurations

\[N_2 \]
\[2s^22p^3 \]

\[O_2 \]
\[2s^22p^4 \]

What are some consequences of the different electron configurations?
Electron Configurations

N_2
$2s^22p^3$

O_2
$2s^22p^4$

What are some consequences of the different electron configurations? What physical properties will be influenced?
Magnetism and Electron Configuration

Two types of magnetism based on electron configuration.

- **Paramagnetic**
 - Unpaired electrons
- **Diamagnetic**
 - All electrons paired

\(d\)-Electron configurations of coordination compounds are experimentally determined by measuring magnetic susceptibility, \(\chi\).

- **paramagnetic** – having unpaired e-; the substance is attracted to (or adds to) the external field
- **diamagnetic** – lacking unpaired e-; the substance is repelled by (or subtracts from) the external field
What factors affect the magnetism of transition metals?

1. Oxidation State

Consider Cu\(^{+}\) vs. Cu\(^{2+}\)

- \(d_{z^2}\) \(d_{x^2-y^2}\)
- \(d_{yz}\) \(d_{xz}\) \(d_{xy}\)

2. Coordination Geometry

Consider Square Planar vs. Tetrahedral Ni\(^{III}\)L\(_4\)

- \(d_{z^2}\) \(d_{x^2-y^2}\)
- \(d_{yz}\) \(d_{xz}\) \(d_{xy}\)

3. Ligand Identity

D-orbital Splitting

Octahedral (\(\Delta_o\))

- \(d_{x^2-y^2}\)
- \(d_{xy}\)
- \(d_{z^2}\)
- \(d_{yz}\) \(d_{xz}\)
- \(d_{xy}\)
Transition Metals and Magnetism

Spectrochemical Series
Strong σ donors or π acceptors induce bigger energy gaps in d orbitals (Δ_o)

$I^- < Br^- < Cl^- < F^- < OH^- < H_2O < NH_3 < NO_2^- < PPh_3 < CH_3^- < CN^- < CO$

Consider Fe$^{2+}$
$Fe(OH)_6^{4-}$ vs. $Fe(CN)_6^{4-}$

Low Field

High Spin

High Field

Low Spin

Why does CO induce such large Δ_o?
Transition Metals and Magnetism

\[\text{HOMO} \quad \text{LUMO} \]

\[1\pi, 1\pi^* \]

\[3\sigma^* \]

\[1\pi^* \]

\[2p \]

\[\sigma-\text{donation} \]

\[\pi-\text{accepting} \]

\[M \rightarrow \text{C} = \text{O} \]
Manganese Acetylacetonate (acac)

How will this molecule coordinate to a metal ion?

Bidentate through both oxygen atoms

How many acac ligands will manganese accept assuming octahedral geometry?

Three

If this complex is neutral, what is the charge on Mn?

Mn$^{3+}$

How many d electrons?

Four
Mn(acac)$_3$ Synthesis

- KMnO$_4$
- Slow addition of acac (aqueous)
- Mn(acac)$_3$
- Dry on frit

Rapid addition results in foam...what might this be?
The Paramagnetic Complex $\text{[Mn(acac)$_3$]}$ – Magnetic Susceptibility

Tris(acetylacetonato)manganese(III)

\[
\text{KMnO}_4 + \text{excess } \text{acac} \rightarrow \text{Tris(acetylacetonato)manganese(III)}
\]
[Mn(acac)$_3$]: Possible d-Electron Configurations

Mn$^{3+}$ electron configuration? [Ar] $3d^4$

Remember: 4s e- are lost first (lower Z^)*

d-orbital splitting in an octahedral ligand field?

Possible d-electron configurations?

Two options, depending on strength of Mn—acac interactions (ligand field strength).

Our goal: Determine d-electron configuration and strong/weak character of acac ligand.
A Brief Review of NMR

How does NMR work?

• Nuclei have spins – +1/2 and -1/2 for 1H.
• Nuclear “magnets” line up parallel or antiparallel to the external magnetic field.

• The external field is modulated around its “central” value (300 MHz, in our case) by passing current through coils.
• Nuclei in different chemical environments absorb at different frequencies (undergoing spin transitions).
• The chemical shifts we report (in ppm) are shifts from the frequency of the external field.

$$2.1 \text{ ppm} = \left(\frac{2.1}{1 \times 10^6} \right) (300 \times 10^6 \text{ Hz}) = 630 \text{ Hz}$$
The Evans Method for Determining Magnetic Susceptibility

You will determine the degree to which your paramagnetic sample adds to the external field of the NMR magnet.

Compare the solvent peak for CHCl₃ alone (0.2%/99.8% CDCl₃) to peak for CHCl₃ in the presence of the paramagnetic sample.

Mn(acac)₃ in 99.8% CDCl₃

Dilute solution of known concentration

99.8% CDCl₃ only

Should see two separate solvent peaks in the NMR. The difference between them (Δν) is related to the magnetic susceptibility.
Calculations: Determining χ_M, χ_M' and n

Goal of calculations: To determine number of unpaired d-electrons, n

Strategy:

1. Determine total magnetic susceptibility, χ_M, from the measured frequency difference between the two solvent peaks, $\Delta \nu$ (Eqn 10).

 $\chi_M = 477 \left(\frac{\Delta \nu}{Q \nu_1 c} \right)$

2. Solve for magnetic susceptibility due to unpaired electrons, χ_M' (Eqn 4).

 $\chi_{M,\text{tot}} = \chi_M' + \chi_M (\text{metal core}) + \chi_M (\text{ligands})$

3. Use χ_M' and measured temperature (in kelvins) to solve for n (Eqn 8).

 $$\chi_M' T = \frac{1}{8} n(n + 2)$$

*d-electron configuration low- or high-spin? acac ligand strong- or weak-field?
Experimental Notes

1. Prepare a **dilute** solution of Mn(acac)$_3$ of **known concentration**.
 a) Use the smallest measurable mass (~ 1 mg); deliver a known volume with a graduated syringe or micropipette.
 b) Solution should be light yellow/tan. You may need to dilute further; just keep track of exactly what you do so that you can calculate the final molar concentration.

2. I will prepare the capillary tubes containing pure CDCl$_3$ (with 0.2% CHCl$_3$). When your sample is complete, put one in your NMR tube, making sure it drops to the bottom.

3. On your spectrum:
 a) Zoom in and label your two solvent peaks (maximum precision).
 b) Make sure you have the recorded temperature.
Formal Report (Due Thurs., 4/9)

Your report should consist of:

• Your NMR spectrum, with chemical shifts labeled

• Calculations of χ_M, χ'_M, and n
 • Note: In Table 12-1 (p. 122), the χ_M values given have been multiplied by 10^6; the correct values are on the order of 10^{-6} cm3 mol$^{-1}$. This also applies to the value for the metal given in the footnote: it should be -13×10^{-6} cm3 mol$^{-1}$.

• Make sure to check you report with the rubric on the course website!