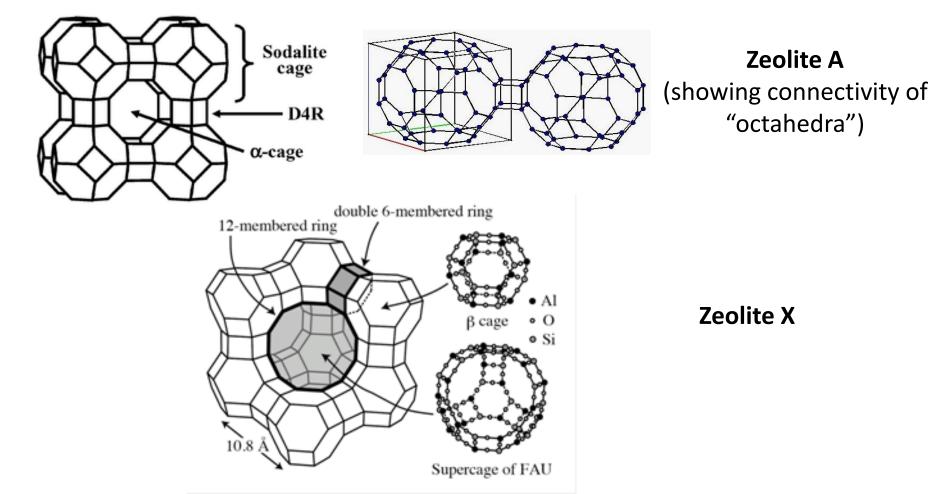
Exp. 1 (Text #3): The Molecular Sieve Zeolite X

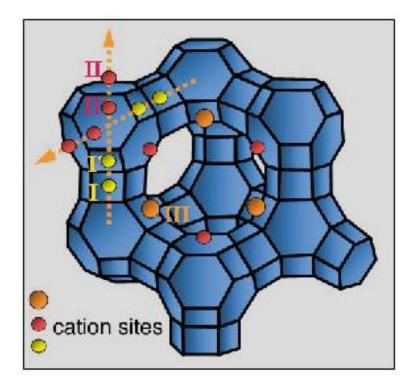
Lab Work 1/24 Report Due 2/6


What is a zeolite?

- A microporous solid, containing pores or channels in its structure that can accommodate guest molecules
- An aluminosilicate
 - Framework stoichiometry: (Si, Al)_nO_{2n}
 - Si or Al atoms are tetrahedrally coordinated to bridging O's ("vertex-sharing" tetrahedra)
 - Cations (e.g., Na⁺, K⁺) *required for charge balance*

Si⁴⁺ vs. (Al³⁺ + Na⁺)

Zeolite Structure


Several aluminosilicate structures are based on a **truncated** octahedron with stoichiometry $M_{24}O_{36}$ (where M = Si, Al), also called the sodalite or β cage:

Zeolite Structure, continued

Cations occupy numerous sites within the framework, and help to determine the size of the pores (α - or supercage).

– Also influenced by Si/Al ratio

We will use Na⁺ to balance charge, so the **hydrated sodium ion** helps determine pore size.

How would pore size change if K⁺ were used, instead?

K⁺ *is larger; pore size would be smaller.*

Applications of Zeolites

- Molecular sieves (separation by size):
 - Desiccants/Adsorbents
- Ion exchange
 - Water softening
- Catalysis
 - Introduction of transition-metal ions affords numerous sites for catalytic reactions

NaX Synthesis and Ion-Exchange:

Synthesis of NaX:

(24-*n*) SiO₂ + *n* NaAlO₂
$$\rightarrow$$
 Na_nSi_{24-n}Al_nO₄₈

n = 9.6 – 12 for X-type zeolites; For us, n = 10.7 (pore size = 7.4 Å)

Completed by mixing prepared solutions of sodium aluminate and sodium silicate (Solutions 1 and 2 in text)

Characterization by IR spectroscopy (1/25): See Balkus, K. J. et al. *J. Chem. Educ.* **1991**, *68*, 875-877 for published spectra.

Ion-Exchange Reaction (1/25):

 $Na_nSi_{24-n}Al_nO_{48} + x CoCl_2 \rightarrow Co_xNa_{n-2x}Si_{24-n}Al_nO_{48} + 2x NaCl$

What is the specific ion-exchange process that occurs here? Uptake of 1 Co²⁺ results in release of 2 Na⁺ ions

NaX Synthesis: Procedural Notes and Tips

- You will work in pairs on this experiment.
- We will perform the experiment at **50% scale**.
- Next week, we will complete Part A to the stopping point mentioned in the text (filtering NaX crystals and leaving them in your drawer to dry).
- Our aim is to allow 2 hours for reaction in the oven, ideally starting around 3:00. We cannot begin heating until everyone is ready.
 - Make water bath immediately and start heating (watch temp as directed)
 - Work on Solutions 1 and 2 simultaneously
 - Note that the specified masses are not very precise (e.g., 1.2 g). **Don't** waste time trying for 1.200 g; just record the exact mass you obtain.
- After cooling, you will suction-filter your product using a Buchner funnel and filter paper. Wash the crystals with ~3 portions of water and continue suction as long as possible.
- Be careful when removing crystals from filter paper.

Overview of Activities for Next Week

In Lab Next Week:

- 1. Determine total mass of dry NaX product
- 2. Acquire IR spectrum of solid NaX product
- 3. Perform cobalt-exchange reaction:

 $Na_{10.7}Si_{13.3}AI_{10.7}O_{48} \ + \ x \ CoCI_2 \ \rightarrow \ Co_xNa_{10.7-x}Si_{13.3}AI_{10.7}O_{48}$

1. Percent Yield of NaX Product

You prepared two solutions – sources of alumina and silicate – and mixed them together to form NaX:

- 1. $AI(OC_3H_7)_3 \rightarrow NaAIO_2$
- 2. Silica gel \rightarrow Silicate ("SiO₂")

Overall reaction:

$$13.3 \text{ SiO}_2 + 10.7 \text{ NaAlO}_2 \rightarrow \text{Na}_{10.7} \text{Si}_{13.3} \text{Al}_{10.7} \text{O}_{48}$$

How will you calculate the theoretical yield of NaX?

Find limiting reactants from preparation of Solutions 1 & 2 and for the overall reaction