Three Generations of DNA Sequencing

DNA Sequencing

Polymerase Chain Reaction (PCR) revolutionized the fields of biology and biochemistry

What we need for PCR Reaction:

Primers and DNA Polymerase

PCR Termination

2',3'-dideoxyATP

DNA Sequencing

DNA Sequencing

DNA Sequencing

Primer:
5 , \qquad GG $\mathbf{3}^{\prime}$

Electropherograms

Next Generation Sequencing

Recent advances in sequencing methods has made genome sequencing very fast and cheap!

Human Genome Project (used chain termination method) took 10 years to complete and over $\$ 300$ million!

Next-Gen techniques allowed the genome of James Watson (of Watson and Crick fame) - the $3^{\text {rd }}$ sequenced human genome) to be sequenced in 2 months for less than $\$ 1 \mathrm{M}$.

Genome sequencing cost as estimated by NHGRI

Next Generation Sequencing - Pyrosequencing

DNA is randomly sheared by sonication 300-500 bp fragments produced

dsDNA is melted apart to form single strands.
ssDNA are bound to DNA "capture" Beads SPRI Beads = solid phase reversible immobilization

This capture reaction happens under REALLY dilute conditions (< 1 DNA molecule per bead)

Under high salt conditions (2.5 M NaCl) and PEG, DNA binds to the carboxylate. Believe it, it

DNA is amplified on the bead by PCR until ~10 million copies are present

Next Generation Sequencing - Pyrosequencing

Beads are transferred to a fiber optic slide with one bead per well.

Each well is 75 picoliters and one slide contains 1.6
million wells

> Pyrosequencing reactions occur in these wells.

1. One nucleotide (let's say dGTP) is added to the slide.
2. A 'burst' of light is seen (sensed through the fiber optic cable) if the dNTP is complementary.
3. Wash off residual dGTP
4. Add dATP - burst - wash
5. Add dCTP - burst - wash
6. Add dTTP - burst - wash
7. Back to $1^{\text {st }}$ step

Next Generation Sequencing - Pyrosequencing

$$
\text { DNA }_{n \text { residues }}+\text { dNTP } \frac{\text { DNA polymerase }}{1} \text { DNA }_{n+1 \text { residues }}+\underset{\text { Pyrophosphate }}{\mathrm{P}_{2} \mathrm{O}_{7}^{4-}}
$$

$$
\mathrm{P}_{2} \mathrm{O}_{7}^{4-}+\quad \text { Adenosine } \underset{\mathrm{O}^{-}}{\stackrel{\mathrm{O}}{\mathrm{P}}-\mathrm{OSO}_{3}^{2-}} \xrightarrow[2]{\text { ATP sulfurylase }} \text { ATP }+\mathrm{SO}_{4}^{2-}
$$

Adenosine-5 '-phosphosulfate

Preparation for next step (d) $\mathrm{NTP}+2 \mathrm{H}_{2} \mathrm{O} \xrightarrow[4]{\text { apyrase }}$ (d) $\mathrm{NMP}+2 \mathrm{PO}_{4}^{3-}$

Once sequencing reactions are done, genome sequence is pieced back together (shotgun approach)

