Unit 10 Group Work - Intermolecular Forces and the Ideal Gas Law

Group members:
\qquad
\qquad
\qquad
\qquad

1. Please describe the relationship between the strength of intermolecular forces for a given substance and the T_{m} and T_{b}.
2. For each of the following compounds, please determine which intermolecular force is the most important in stabilizing the liquid and solid phases. You may wish to start by drawing a Lewis structure.

NH_{3}	CH_{4}	$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	HCl	$\mathrm{CH}_{3} \mathrm{Cl}$	NCl_{3}
H-bond	H-bond			London		Dipole-Dipole	
	London	Dipole-dipole		Dipole-Dipole		London	

3. For each pair, predict which vaporizes at a higher temperature. You must justify your answer. NH_{3} and NCl_{3}
CH_{4} and $\mathbf{C H}_{3} \mathbf{C l}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$

HCl and HF
4. Justify this data based on intermolecular forces:

Molecule	$\Delta \boldsymbol{H}_{\text {vap }}$ $(\mathbf{k J} / \mathbf{m o l})$
F_{2}	6.62
Cl_{2}	20.41
Br_{2}	29.96
I_{2}	41.57

5. Starting with the ideal gas law, determine a formula that can be used to calculate the density of a gas $\left(\right.$ density $\left.=\frac{\text { mass }}{\text { volume }}\right)$.

$$
\frac{m}{V}=\frac{P \cdot M W}{R T}
$$

6. Calculate the Molarity and Density for each of the gases at STP. Do you notice any trends in these numbers?
CH_{4}
N_{2}
Ar
Xe
CO_{2}

Molarity of all is the same $\left(0.0446 \mathrm{~mol} \mathrm{~L}^{-1}\right)$
0.716 g/L
$1.25 \mathrm{~g} / \mathrm{L}$
1.78 g/L
$1.96 \mathrm{~g} / \mathrm{L}$
7. $\mathrm{NO}_{2}(\mathrm{~g})$ and $\mathrm{Xe}(\mathrm{g})$ are combined in the flask below. NO_{2} has a characteristic yellow color while $\mathrm{Xe}(\mathrm{g})$ is colorless. These gases do not react with each other. Please sketch what you expect the flask to look like after the gases are allowed to completely settle.

8. A 1.98 L sample of a gas exerts a pressure of 2.00 atm at $30^{\circ} \mathrm{C}$ and has a mass of 12.44 g . If this gas has an empirical formula of CH , determine the molecular formula.

$\mathrm{C}_{6} \mathrm{H}_{6}$

9. Under standard temperature and pressure conditions, what volume would 1 mole of Kr occupy?

22.4 L

10. Methane $\left(\mathrm{CH}_{4}\right)$ reacts with $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ to produce $\mathrm{H}_{2}(\mathrm{~g})$ and either carbon monoxide OR carbon dioxide.

If 5 L of $\mathrm{CH}_{4}(\mathrm{~g})$ is found to react completely with 10 L of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ at constant temperature and pressure, which of these processes has occurred?

CO_{2} was produced

11. Consider the reaction container below. Each chamber is exactly 1 L . One chamber contains 0.5 moles of $\mathrm{O}_{2}(\mathrm{~g})$ and the other chamber contains 0.1 moles of $\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{~g})$. When these gases are allowed to mix, a combustion reaction occurs. $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ are produced. Pay close attention to the change in volume when the gases are mixed.

a. Calculate the pressure of each chamber if the temperature is held at $25^{\circ} \mathrm{C}$.

$$
P_{\mathrm{O} 2}=12.23 \mathrm{~atm} . \quad P_{\mathrm{C} 6 \mathrm{H} 6}=2.45 \mathrm{~atm}
$$

b. Write a balanced equation for the combustion reaction that would occur between these two molecules.
c. What is the pressure of $\mathrm{CO}_{2}(\mathrm{~g})$ after the reaction if the temperature did not change.

7.34 atm.

d. What is the mass of water that is produced?
12. For each of the following blank graphs, determine what the graph would look like if all other variables in the ideal gas law are held constant. For example:
V vs. $\mathrm{T} \rightarrow \mathrm{n}$ and P are constant
$P V=n R T$
$V=\frac{n R T}{P}$
$V=($ Constant $) T$

So in a graph of V vs. T , we would see a straight line with a slope of $\frac{n R}{P}$

T
n

T

