

Grossoehme, Nicholas <grossoehmen2@mailbox.winthrop.edu>

Chapter 12 - Enzyme Kinetics

1 message

Google Forms <nobody@google.com>
To: grossoehmen2@mailbox.winthrop.edu

Thu, Oct 13, 2016 at 1:04 PM

Thanks for filling out Chapter 12 - Enzyme Kinetics

Here's what we got from you:

EDIT RESPONSE

Chapter 12 - Enzyme Kinetics

Your email address (grossoehmen2@mailbox.winthrop.edu) was recorded when you submitted this form.

Match the rate constant units with the reaction order.

	0th order	1st order	2nd order
1/s		•	
1/M*1/s			
M/s	•		

Which process is an equilibrium in Michaelis-Menten kinetics?

What is meant by a "Steady State Approximation"?

[ES] does not change as the reaction proceeds

https://mail.google.com/mail/u/1/2ui=2&ik=0a17h009h1&view=nt&eaarch=inhov&th=157hf00fd3fd78c5&eiml=157hf00fd3fd78c5

1/3

When V0 =	Vmax/2, Km =
Sorry, Googl	e Forms don't do subscripts.
[S]	
Which of the	e following refers to a second order reaction?
kcat	
○ Km	
kcat/Km	
The Steady	State Kinetics model can determine a reaction mechanism.
True	It cannot determine if intermediates form during the reaction progress.
False	
Reactions th	nat involve multiple substrates can be modeled with Michaelis Menten kinetics
True	Kinetic experiments and equations can be derived, but
False	they are more complicated than M-M equation
Methanol po	oisoning is treated by getting someone intoxicated with ethanol. This is an example _ inhibition.
compete	etive
uncomp	etitive
Which form	of inhibition always decreases the apparent Km and Vmax?
compete	Note that there was a typo in the reading questions - it said increase instead of
mixed	decrease.
uncomp	None of these forms always increases both variables - Mixed CAN increase both, etitive but it can also lead to a decrease in KM. See Table 12.2 for a summary
	• ,
Feedback in	phibition is a form of Select all that apply.
☐ Mixed in	hibition
✓ allosterio	cregulation
	stive inhibition

https://mail.com/mail/u/1/2 ui=2 & i k=0 a 17 h 000 h 1 & uiaw=nt & earch=inhov & th=157 h f 00 f d 3 f d 7 R c 5 & sim l=157 h f 00 f d 3 f d 7 R c 5 & sim

uncompetetive inhibition
What is a common form of enzyme control through covalent modifications?
phosphorylation
yeah, it must be phosphorylation
no, seriously, choose phosphorylation.
 metabolic pathways are turned on/off because of phosphorylation triggered by extracellular signals. So choose the first one.
reate your own Google Form