Chapter 12 - Enzyme Kinetics

1 message
Google Forms nobody@google.com
Thu, Oct 13, 2016 at 1:04 PM
To: grossoehmen2@mailbox.winthrop.edu

Thanks for filling out Chapter 12 - Enzyme Kinetics
Here's what we got from you:

EDIT RESPONSE

Chapter 12 - Enzyme Kinetics

Your email address (grossoehmen2@mailbox.winthrop.edu) was recorded when you submitted this form.

Match the rate constant units with the reaction order.

	Oth order	1st order	2nd order
$1 / \mathrm{s}$			
$1 / M^{*} 1 / \mathrm{s}$			
M / s			

Which process is an equilibrium in Michaelis-Menten kinetics?

ES $\rightarrow \mathrm{E}+\mathrm{P}$
($\mathrm{E}+\mathrm{S}$--> ES
$E+S \rightarrow E+P$

What is meant by a "Steady State Approximation"?

[ES] does not change as the reaction proceeds

When V0 = Vmax/2, Km = \qquad .
Sorry, Google Forms don't do subscripts.
[S]

```
Which of the following refers to a second order reaction?
    kcat
    Km
- kcat/Km
```

The Steady State Kinetics model can determine a reaction mechanism.
True It cannot determine if intermediates form during the reaction progress.
False
Reactions that involve multiple substrates can be modeled with Michaelis Menten kinetics
True

False	Kinetic experiments and equations can be derived, but
they are more complicated than $M-M$ equation	

Methanol poisoning is treated by getting someone intoxicated with ethanol. This is an example of \qquad inhibition.

- competetive
uncompetitive

Which form of inhibition always decreases the apparent Km and Vmax?

competetive	Note that there was a typo in the reading questions - it said increase instead of decrease.
mixed	None of these forms always increases both variables - Mixed CAN increase both,
uncompetitive	but it can also lead to a decrease in KM. See Table 12.2 for a summary

Feedback inhibition is a form of \qquad . Select all that apply.

Mixed inhibition

\checkmark allosteric regulation
\square competetive inhibition
\checkmark uncompetetive inhibition

What is a common form of enzyme control through covalent modifications?

- phosphorylation
yeah, it must be phosphorylation
no, seriously, choose phosphorylation.
metabolic pathways are turned on/off because of phosphorylation triggered by extracellular signals. So choose the first one.

Create your own Google Form

