Membrane Transport - Understanding Ion Gradients and Potentials in Action Potentials

1. Examine the image below (Fig 10-6 from your book). This shows us that the equilibrium potential of Na⁺ is +60 mV and K⁺ is -75 mV. This means that at this potential, the chemical and electrochemical gradients are in balance...so mathematically, $\Delta G = 0$ in the equation below.

$$\Delta G = RT \ln \left(\frac{[A]_{in}}{[A]_{out}}\right) + Z\Im\Delta\Psi$$

a. Using the resting potential for each ion, determine the ratio of [A]_{in}:[A]_{out} (so solve for the term in the ln(x)).

- b. The ratios calculated in part A tell you about the resting chemical gradient for a neuron cell.
 - i. Which ion has a higher intracellular concentration?
 - ii. Which ion has a higher extracellular concentration?
 - iii. For each of the following membrane potentials, identify which direction the ions will flow (in, out, or no net flow) and the sign on ΔG (< 0, > 0, = 0).

Membrane Potential	Na⁺ flow	K ⁺ flow	ΔG
+80 mV			
+ 60 mV			
0 mV			
-60 mV			
-75 mV			
-80 mV			

- 2. The action potential begins by nerve cell stimulation. This stimulation triggers the Na⁺ channel to open.
 - a. Which direction will sodium ions flow?
 - b. As you see in the graph, this causes the membrane potential to become more positive. Why?

- c. Sodium ions quickly rush into the cell but stop after roughly 0.75 ms this is shown as a peak in the action potential. Why does the ion channel close? Hint, remember that this is a voltage-gated ion channel.
- d. The change in membrane potential triggers voltage gated potassium channel to open. At this membrane potential (~30 mV), which direction does the potassium flow?
- e. Why does the membrane potential become more negative as the potassium channel is active?
- f. How do you think that this action potential is propagated down the neuron?

3. Using the voltage gated potassium channel as a guide, discuss how the voltage-gated sodium channel in a nerve cell might work.