Lecture 1

Life, the Universe, and Everything Chapters 1-3

Where Biochemistry Fits In

Figure 1-14
© John Wiley \& Sons, Inc. All rights reserved.

The Basics

What exactly is Biochemistry?

Study of life on the molecular level
Life - ?

Capacity for growth, reproduction, functional activity, and continual change preceding death.

Smallest Unit of Life?

Prokaryotes

Prokaryotes

Prokaryotic Cell Structure

Cytoplasm -
Ribosome -
Nucleoid -
Flagella
Cell Wall -
Plasma Membrane -
Pili -

Eukaryotes

Components of the Cell

Table 1-3 Elemental Composition of the Human Body

Element	Dry Weight $\text { (\%) }{ }^{\text {a }}$	Elements Present in Trace Amounts
C	61.7	B
N	11.0	F
0	9.3	Si
H	5.7	V
Ca	5.0	Cr
P	3.3	Mn
K	1.3	Fe
S	1.0	Co
Cl	0.7	Ni
Na	0.7	Cu
Mg	0.3	Zn
		Se
		Mo
		Sn
		I

${ }^{\text {a Calculated from Frieden, E., Sci. Am. 227(1), 54-55 (1972). }}$

Components of the Cell

Table 1-1 Molecular Composition of E. coli

Component	Percentage by Weight
$\mathrm{H}_{2} \mathrm{O}$	70
Protein	15
Nucleic acids:	
DNA	$\mathbf{1}$
RNA	6
Polysaccharides and precursors	3
Lipids and precursors	2
Other small organic molecules	1
Inorganic ions	1

Source: Watson, J.D., Molecular Biology of the Gene (3rd ed.), p. 69, Benjamin (1976).

Water - the solvent of life

What makes water ideal for living systems?

Water - the solvent of life

What makes water ideal for living sysems?
Polarity - allows cellular compartmentalization
(a) Micelle

Figure 2-8
© John Wiley \& Sons, Inc. All rights reserved.
(b) Bilayer

Water - the solvent of life

What makes water ideal for living sysems?

$$
F=\frac{k q_{1} q_{2}}{r^{2}}
$$

Dielectric Constant of the solvent

Source: Brey, W.S., Physical Chemistry and Its Biological Applications, p. 26, Academic Press (1978).

Table 2-1
© John Wiley \& Sons, Inc. All rights reserved.

Water - the solvent of life

What makes water ideal for living sysems?

H -bonding potential

Substance	Specific Heat $\mathbf{J} /\left(\mathbf{g} \cdot{ }^{\circ} \mathbf{C}\right)$	Molar Heat Capacity $\mathbf{J} /\left(\mathbf{m o l} \cdot{ }^{\circ} \mathbf{C}\right)$
Air (dry)	1.01	29.1
Aluminum	0.902	24.4
Copper	0.385	24.4
Gold	0.129	25.4
Iron	0.450	25.1
Mercury	0.140	28.0
NaCl	0.864	50.5
Water $(s)^{*}$	2.03	36.6
Water (l)	4.179	75.3

*At $-11^{\circ} \mathrm{C}$

Water and Acids-Bases Chemistry

When Bronsted Acid is dissolved in water, something MUST act as a base

$$
\begin{array}{rlr}
\mathrm{HA}_{\mathrm{aq}}+\mathrm{H}_{2} \mathrm{O} & \longleftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}{ }_{\mathrm{aq}}+\mathrm{A}_{\mathrm{aq}} & K_{a}=\frac{\left[H^{+}\right]\left[A^{-}\right]}{[H A]} \\
\mathrm{H}_{2} \mathrm{O}_{(1)}+\mathrm{A}_{\mathrm{aq}} & \longleftrightarrow \mathrm{OH}_{\mathrm{aq}}^{-}+\mathrm{HA}_{\mathrm{aq}} & K_{b}=\frac{\left.\left[O H^{-}\right] H A\right]}{\left[A^{-}\right]}
\end{array}
$$

What are the equilibrium constants?

Titration Curves

Weak Acids and Bases

Calculate the pH of $465 \mu \mathrm{M}$ Acetic Acid $\left(p K_{a}=4.75\right)$

$$
\mathrm{HX}_{\mathrm{aq}}+\mathrm{H}_{2} \mathrm{O}_{(I)} \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}{ }_{\mathrm{aq}}+\mathrm{X}_{\mathrm{aq}}^{-}
$$

Weak Acids and Bases

Calculate the pH of $465 \mu \mathrm{M}$ pyridine $\left(\mathrm{p}_{a}=5.25\right)$

$$
\mathrm{X}_{\mathrm{aq}}+\mathrm{H}_{2} \mathrm{O}_{(I)} \longleftrightarrow \mathrm{OH}_{\mathrm{aq}}^{-}+\mathrm{HX}_{\mathrm{aq}}^{+}
$$

Titrations of Weak Acids with a Strong Base

Mathematical simplification of Acid-Base Chemistry

Derive a mathematical expression that relates the pH and $p K_{a}$ with the ratio of conjugate acid to conjugate base.

Buffers

$$
\begin{aligned}
\mathrm{X}_{\mathrm{aq}}+\mathrm{H}_{2} \mathrm{O}_{(I)} & \longleftrightarrow \mathrm{OH}_{\mathrm{aq}}^{-}+\mathrm{HX}_{\mathrm{aq}} \\
\mathrm{HA}_{\mathrm{aq}}+\mathrm{H}_{2} \mathrm{O}_{(I)} & \rightleftarrows \mathrm{H}_{3} \mathrm{O}_{\mathrm{aq}}^{+}+\mathrm{A}_{\mathrm{aq}}^{-}
\end{aligned}
$$

$$
p K_{a}+\log \frac{\left[A^{-}\right]}{[H A]}=p H
$$

TABLE 10.1 Acidity Constants at $25^{\circ} \mathrm{C}^{*}$

Acid	$\boldsymbol{K}_{\mathrm{a}}$	$\mathrm{p} K_{\mathrm{a}}$
formic acid, HCOOH	1.8×10^{-4}	3.75
benzoic acid, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$	6.5×10^{-5}	4.19
acetic acid, $\mathrm{CH}_{3} \mathrm{COOH}$	1.8×10^{-5}	4.75
carbonic acid, $\mathrm{H}_{2} \mathrm{CO}_{3}$	4.3×10^{-7}	6.37
hypochlorous acid, HClO	3.0×10^{-8}	7.53
hypobromous acid, HBrO	2.0×10^{-9}	8.69
boric acid, $\mathrm{B}(\mathrm{OH})_{3}{ }^{\dagger}$	7.2×10^{-10}	9.14
hydrocyanic acid, HCN	4.9×10^{-10}	9.31
phenol, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$	1.3×10^{-10}	9.89
hypoiodous acid, HIO	2.3×10^{-11}	10.64

*The values for K_{a} listed here have been calculated from $\mathrm{p} K_{\mathrm{a}}$ values with more significant figures than shown so as to minimize rounding errors. Values for polyprotic acids-those capable of donating more than one proton-refer to the first deprotonation.
${ }^{\dagger}$ The proton transfer equilibrium is $\mathrm{B}(\mathrm{OH})_{3}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons$

Buffers

What is the pH of a buffer containing 0.04 M NaAcetate and 0.1 M Acetic Acid? pKa=4.75

$$
p K_{a}+\log \frac{\left[A^{-}\right]}{[H A]}=p H
$$

Drawing a Titration Curve - Summary

Let's Practice

Draw the pH vs. volume plot that would result from titrating 1.25 M NaOH into a 100 mL solution of 50 mM of a weak acid that has a pK_{a} of 8.1.

1. Starting pH
2. $1 / 2 \mathrm{Eq}$. Pt.
3. Eq. Pt.
4. Final pH

pKa and Structure

What influences the pKa of an acid?

Formic Acid
$\mathrm{pKa}=3.75$

$$
\mathrm{A}^{-}+\mathrm{H}^{+} \rightleftharpoons \mathrm{HA}
$$

$$
K=\frac{[H A]}{\left[H^{+}\right]\left[A^{-}\right]}
$$

Acetic Acid
pKa $=4.76$

Monochloroacetic Acid
pKa $=2.85$

pKa and Structure

What influences the pKa of an acid?

Malonic Acid
pKa, $1=2.83$
$\mathrm{pKa}, 2=5.69$

$$
\begin{array}{ll}
\mathrm{A}^{2-}+\mathrm{H}^{+} \rightleftharpoons \mathrm{HA}^{-} & \mathrm{HA}^{-}+\mathrm{H}^{+} \rightleftharpoons \mathrm{H}_{2} \mathrm{~A} \\
K=\frac{\left[H A^{-}\right]}{\left[H^{+}\right]\left[A^{2-}\right]} & K=\frac{\left[H_{2} A\right]}{\left[H^{+}\right]\left[H A^{-}\right]}
\end{array}
$$

Polyprotic Acids and Bases

Polyprotic Acid - an acid that has more than one ionizable proton

Amphiprotic - a molecule that can accept or donate a proton

Important Biological Examples

Phosphoric Acid

$$
\begin{array}{ll}
\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} & p K a=2.15 \\
\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HPO}_{4}^{-2}+\mathrm{H}_{3} \mathrm{O}^{+} & p K a=7.20 \\
\mathrm{HPO}_{4}^{-2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{PO}_{4}^{-3}+\mathrm{H}_{3} \mathrm{O}^{+} & p K a=12.37
\end{array}
$$

Carbonic Acid

$$
\begin{array}{ll}
\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HCO}_{3}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} & p K a=6.35 \\
\mathrm{CCO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CO}_{3}^{-2}+\mathrm{H}_{3} \mathrm{O}^{+} & p K a=10.33
\end{array}
$$

Amino Acids

$$
\left(\mathrm{NH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right)^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons\left(\mathrm{NH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2}\right)+\mathrm{H}_{3} \mathrm{O}^{+} \quad p \mathrm{Ka}=2.34
$$

$$
\left(\mathrm{NH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2}\right)+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}\right)^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \quad p K a=9.69
$$

Polyprotic Acids and Bases

Isoelectric Points

Thermodynamcis - a review

$$
a \mathrm{~A}+b \mathrm{~B} \rightleftharpoons y Y+z \mathrm{Z}
$$

Write an equilibrium constant expression that describes this equibilibrium.

$$
K=\frac{[Z]^{z}[Y]^{y}}{[A]^{a}[B]^{b}}
$$

How do we convert this to a statement of spontaneity (ΔG)

$$
\Delta G=-R T \ln K
$$

What else do we need to know to describe the thermodynamic profile of this reaction?

$\Delta \mathrm{H} \rightarrow$ Enthalpy

$\Delta S \rightarrow$ Entropy

Thermodynamcis - a review

$$
\Delta G=\Delta H-T \Delta S
$$

ΔH	ΔS	ΔG
-	+	Temperature
-	-	
+	+	
+	-	

Thermodynamcis - a review

$$
\mathrm{CH}_{4(g)}+2 \mathrm{O}_{2(g)} \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}_{(l)}+\mathrm{CO}_{2(g)} \quad \Delta H=-890 \mathrm{~kJ}
$$

Is this reaction endothermic or exothermic?

Will this reaction be entropically favorable?

Is this reaction spontaneous?

Hess's Law

Since $\Delta H, \Delta S$, and ΔG are State Functions (path independent), we can determine reaction enthalpies from individual reactions that sum to the desired reaction.

