# Lecture 1



# Life, the Universe, and Everything

Chapters 1-3

# Where Biochemistry Fits In





Figure 1-14 © John Wiley & Sons, Inc. All rights reserved.

# The Basics



## What exactly is Biochemistry?

Study of life on the molecular level

Life - ?

Capacity for growth, reproduction, functional activity, and continual change preceding death.



# **Prokaryotes**





# **Prokaryotes**





Cytoplasm –

Ribosome –

Nucleoid –

Flagella

Cell Wall –

Plasma Membrane -

Pili –

# **Eukaryotes**





## **Components of the Cell**



|         | <b>Dry Weight</b> | <b>Elements Present</b> |
|---------|-------------------|-------------------------|
| Element | (%) <sup>a</sup>  | in Trace Amounts        |
| c       | 61.7              | В                       |
| Ν       | 11.0              | F                       |
| 0       | 9.3               | Si                      |
| н       | 5.7               | V                       |
| Ca      | 5.0               | Cr                      |
| Р       | 3.3               | Mn                      |
| К       | 1.3               | Fe                      |
| S       | 1.0               | Со                      |
| CI      | 0.7               | Ni                      |
| Na      | 0.7               | Cu                      |
| Mg      | 0.3               | Zn                      |
|         |                   | Se                      |
|         |                   | Мо                      |
|         |                   | Sn                      |
|         |                   |                         |

### Table 1-3Elemental Composition of the Human Body

<sup>a</sup>Calculated from Frieden, E., Sci. Am. 227(1), 54–55 (1972).

# Components of the Cell



### Table 1-1 Molecular Composition of E. coli

| Component                      | Percentage by Weight |
|--------------------------------|----------------------|
| H <sub>2</sub> O               | 70                   |
| Protein                        | 15                   |
| Nucleic acids:                 |                      |
| DNA                            | 1                    |
| RNA                            | 6                    |
| Polysaccharides and precursors | 3                    |
| Lipids and precursors          | 2                    |
| Other small organic molecules  | 1                    |
| Inorganic ions                 | 1                    |

*Source:* Watson, J.D., *Molecular Biology of the Gene* (3rd ed.), *p*. 69, Benjamin (1976).

Table 1-1 © John Wiley & Sons, Inc. All rights reserved.



What makes water ideal for living systems?



What makes water ideal for living sysems?

Polarity – allows cellular compartmentalization



Figure 2-8 © John Wiley & Sons, Inc. All rights reserved.



What makes water ideal for living sysems?

Polarity and dielectric - allows dissolution of ions

### Dielectric Constant of the solvent

 $F = \frac{kq_1q_2}{r^2}$ 



| Substance            | Dipole Moment<br>(debye) |
|----------------------|--------------------------|
| Formamide            | 3.37                     |
| Water                | 1.85                     |
| Dimethyl sulfoxide   | 3.96                     |
| Methanol             | 1.66                     |
| Ethanol              | 1.68                     |
| Acetone              | 2.72                     |
| Ammonia              | 1.47                     |
| Chloroform           | 1.15                     |
| Diethyl ether        | 1.15                     |
| Benzene              | 0.00                     |
| Carbon tetrachloride | 0.00                     |
| Hexane               | 0.00                     |

Source: Brey, W.S., Physical Chemistry and Its Biological Applications, p. 26, Academic Press (1978).

Table 2-1 © John Wiley & Sons, Inc. All rights reserved.



### What makes water ideal for living sysems?

H-bonding potential





| Substance    | Specific Heat<br>J/(g・°C) | Molar Heat Capacity<br>J/(mol •°C) |
|--------------|---------------------------|------------------------------------|
| Air (dry)    | 1.01                      | 29.1                               |
| Aluminum     | 0.902                     | 24.4                               |
| Copper       | 0.385                     | 24.4                               |
| Gold         | 0.129                     | 25.4                               |
| Iron         | 0.450                     | 25.1                               |
| Mercury      | 0.140                     | 28.0                               |
| NaCl         | 0.864                     | 50.5                               |
| $Water(s)^*$ | 2.03                      | 36.6                               |
| Water(l)     | 4.179                     | 75.3                               |

\*At -11°C

### Water and Acids-Bases Chemistry

When Bronsted Acid is dissolved in water, something MUST act as a base

$$HA_{aq} + H_2O \qquad \longleftarrow \qquad H_3O_{aq}^+ + A_{aq}^- \qquad K_a = \frac{\left[H^+\right]A^-}{\left[HA\right]}$$

$$H_2O_{(l)} + A_{aq}^- \qquad \longleftarrow \qquad OH_{aq}^- + HA_{aq} \qquad K_b = \frac{\left[OH^-\right]HA}{\left[A^-\right]}$$

What are the equilibrium constants?

### **Titration Curves**







Weak Acids and Bases



Calculate the pH of 465  $\mu$ M Acetic Acid (pK<sub>a</sub>= 4.75)

$$HX_{aq} + H_2O_{(l)} \rightarrow H_3O_{aq}^+ + X_{aq}^-$$

Weak Acids and Bases



Calculate the pH of 465  $\mu$ M pyridine (pK<sub>a</sub> = 5.25)

$$X_{aq} + H_2O_{(l)} \longrightarrow OH^-_{aq} + HX^+_{aq}$$





BC

Hq

Mathematical simplification of Acid-Base Chemistry



Derive a mathematical expression that relates the pH and  $pK_a$  with the ratio of conjugate acid to conjugate base.



2

0

0

 $K_{\rm a} = 10^{-2}$ 

Strong acid

20.0

40.0

mL of 0.100 M NaOH added 19

60.0

\*The values for  $K_a$  listed here have been calculated from  $pK_a$  values with more significant figures than shown so as to minimize rounding errors. Values for polyprotic acids—those capable of donating more than one proton—refer to the first deprotonation.

 $7.2 \times 10^{-10}$ 

 $4.9 \times 10^{-10}$ 

 $1.3 \times 10^{-10}$ 

 $2.3 \times 10^{-11}$ 

9.14

9.31

9.89

10.64

<sup>+</sup>The proton transfer equilibrium is  $B(OH)_3(aq) + 2 H_2O(l) \Rightarrow H_3O^+(aq) + B(OH)_4^-(aq).$ 

boric acid,  $B(OH)_2^{\dagger}$ 

phenol, C<sub>6</sub>H<sub>5</sub>OH

hydrocyanic acid, HCN

hypoiodous acid, HIO

### Buffers

What is the pH of a buffer containing 0.04 M NaAcetate and 0.1 M Acetic Acid? pKa = 4.75

$$pK_a + \log \frac{\left[A^{-}\right]}{\left[HA\right]} = pH$$



Let's Practice



Draw the pH vs. volume plot that would result from titrating 1.25 M NaOH into a 100 mL solution of 50 mM of a weak acid that has a  $pK_a$  of 8.1.

- 1. Starting pH
- 2. ½ Eq. Pt.
- 3. Eq. Pt.
- 4. Final pH



### pKa and Structure

What influences the pKa of an acid?



### pKa and Structure

O⁻

What influences the pKa of an acid?



## Polyprotic Acids and Bases

Polyprotic Acid – an acid that has more than one ionizable proton

Amphiprotic – a molecule that can accept or donate a proton



### **Important Biological Examples**

#### **Phosphoric Acid**

| $H_3PO_4 + H_2O \rightleftharpoons H_2PO_4^- + H_3O^+$    | рКа = 2.15  |
|-----------------------------------------------------------|-------------|
| $H_2PO_4^- + H_2O \rightleftharpoons HPO_4^{-2} + H_3O^+$ | рКа = 7.20  |
| $HPO_4^{-2} + H_2O \rightleftharpoons PO_4^{-3} + H_3O^+$ | рКа = 12.37 |

### **Carbonic Acid**

| $H_2CO_3 + H_2O \rightleftharpoons HCO_3^- + H_3O^+$   | рКа = 6.35  |
|--------------------------------------------------------|-------------|
| $HCO_3^- + H_2O \rightleftharpoons CO_3^{-2} + H_3O^+$ | рКа = 10.33 |

#### **Amino Acids**

| $(NH_3CH_2CO_2H)^+ + H_2O \rightleftharpoons (NH_3CH_2CO_2) + H_3O^+$ | рКа = 2.34 |
|-----------------------------------------------------------------------|------------|
| $(NH_3CH_2CO_2) + H_2O \rightleftharpoons (NH_2CH_2CO_2)^- + H_3O^+$  | рКа = 9.69 |

0

## **Polyprotic Acids and Bases**



**Isoelectric Points** 



| Amino Acids                                                           |            |
|-----------------------------------------------------------------------|------------|
| $(NH_3CH_2CO_2H)^+ + H_2O \rightleftharpoons (NH_3CH_2CO_2) + H_3O^+$ | рКа = 2.34 |
| $(NH_3CH_2CO_2) + H_2O \rightleftharpoons (NH_2CH_2CO_2)^- + H_3O^+$  | рКа = 9.69 |



### $aA + bB \rightleftharpoons yY + zZ$

Write an equilibrium constant expression that describes this equibilibrium.

$$K = \frac{[Z]^{z}[Y]^{y}}{[A]^{a}[B]^{b}}$$

How do we convert this to a statement of spontaneity ( $\Delta G$ )

 $\Delta G = -RTlnK$ 

What else do we need to know to describe the thermodynamic profile of this reaction?

 $\Delta H \rightarrow Enthalpy$ 

 $\Delta S \rightarrow Entropy$ 

### Thermodynamcis – a review



$$\Delta G = \Delta H - T \Delta S$$

| ΔН | ΔS | ΔG | Temperature Dependence of $\Delta G$ |
|----|----|----|--------------------------------------|
| -  | +  |    |                                      |
| -  | -  |    |                                      |
| +  | +  |    |                                      |
| +  | -  |    |                                      |

### Thermodynamcis – a review



*Is this reaction endothermic or exothermic?* 

Will this reaction be entropically favorable?

Is this reaction spontaneous?



Since  $\Delta H$ ,  $\Delta S$ , and  $\Delta G$  are State Functions (path independent), we can determine reaction enthalpies from individual reactions that sum to the desired reaction.

