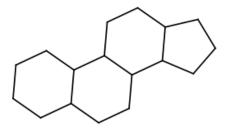
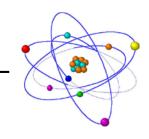
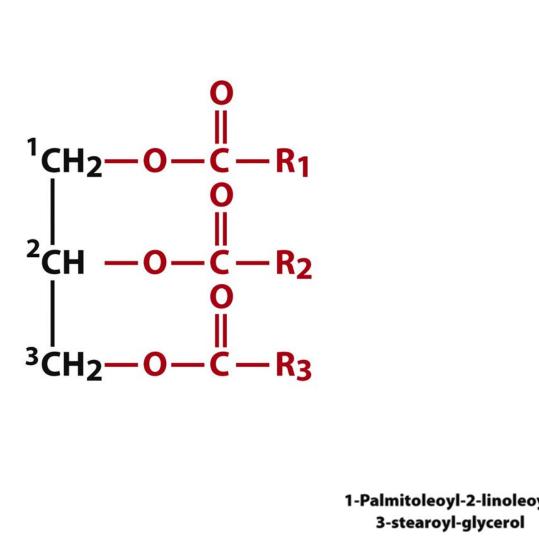
Fats, Cholesterol, and Hormones

Types of Fats


Lipids – biological origin – sparingly soluble in water


Main classes of lipids

Fatty Acids – long hydrocarbon chains with a carboxylic acid on one endHOTriacylglycerols – fatty acid derivatives of glycerolHOOH


Phosphoacylglycerol-phosphate substituted diacylglycerols

Cholesterol – 4 ring system with a single polar group

Triacylglycerol (ide)

Triacylglycerols – fatty acid derivatives of glycerol

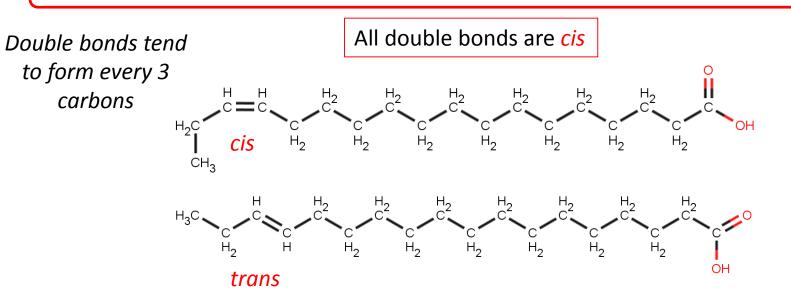
¹ CH ₂ -	-²сн —	³ CH ₂
þ	ģ	ò
¢1=0	0 ¢1=0	$c_{1=0}$
CH2	CH2	CH2
CH2	CH ₂	CH2
CH2	CH2	CH2
CH2	CH ₂	CH2
CH ₂	CH ₂	CH ₂
CH2	CH ₂	CH ₂
CH2	CH ₂	CH ₂
СН	CH	CH ₂
CH	CH	CH ₂
CH2	CH ₂	CH ₂
CH2	CH	CH ₂
CH ₂	12 CH	L CH ₂
CH ₂	I CH ₂	I CH ₂
CH ₂	I CH ₂	I CH ₂
1 16CH3	I CH ₂	I CH ₂
	I CH ₂	I CH ₂
yl-		1
	18CH3	18013

Fatty Acids

Saturated – single bonds all the way down the chain

Saturate	d fatty acids			
12:0	Lauric acid	Dodecanoic acid	CH ₃ (CH ₂) ₁₀ COOH	44.2
14:0	Myristic acid	Tetradecanoic acid	CH ₃ (CH ₂) ₁₂ COOH	52
16:0	Palmitic acid	Hexadecanoic acid	CH ₃ (CH ₂) ₁₄ COOH	63.1
18:0	Stearic acid	Octadecanoic acid	CH ₃ (CH ₂) ₁₆ COOH	69.6
20:0	Arachidic acid	Eicosanoic acid	CH ₃ (CH ₂) ₁₈ COOH	75.4
22:0	Behenic acid	Docosanoic acid	CH ₃ (CH ₂) ₂₀ COOH	81
24:0	Lignoceric acid	Tetracosanoic acid	CH ₃ (CH ₂) ₂₂ COOH	84.2

C > 20 or C < 14 are very uncommon


Most chains have an even number

Fatty Acids

Unsaturated – single bonds all the way down the chain

Palmitoleic acid	9-Hexadecenoic acid	CH ₃ (CH ₂) ₅ CH=CH(CH ₂) ₇ COOH	-0.5
Oleic acid	9-Octadecenoic acid	CH ₃ (CH ₂) ₇ CH=CH(CH ₂) ₇ COOH	13.4
Linoleic acid	9,12-Octadecadienoic acid	CH ₃ (CH ₂) ₄ (CH=CHCH ₂) ₂ (CH ₂) ₆ COOH	-9
α-Linolenic acid	9,12,15-Octadecatrienoic acid	CH ₃ CH ₂ (CH=CHCH ₂) ₃ (CH ₂) ₆ COOH	-17
γ-Linolenic acid	6,9,12-Octadecatrienoic acid	CH ₃ (CH ₂) ₄ (CH=CHCH ₂) ₃ (CH ₂) ₃ COOH	
Arachidonic acid	5,8,11,14-Eicosatetraenoic acid	CH ₃ (CH ₂) ₄ (CH=CHCH ₂) ₄ (CH ₂) ₂ COOH	-49.5
EPA	5,8,11,14,17-Eicosapentaenoic acid	CH ₃ CH ₂ (CH=CHCH ₂) ₅ (CH ₂) ₂ COOH	-54
DHA	4,7,10,13,16,19-Docosahexenoic acid	CH ₃ CH ₂ (CH=CHCH) ₆ CH ₂ COOH	
Nervonic acid	15-Tetracosenoic acid	CH ₂ (CH ₂),CH=CH(CH ₂),2COOH	39
	Oleic acid Linoleic acid α-Linolenic acid γ-Linolenic acid Arachidonic acid EPA DHA	Oleic acid9-Octadecenoic acidLinoleic acid9,12-Octadecadienoic acidα-Linolenic acid9,12,15-Octadecatrienoic acidγ-Linolenic acid6,9,12-Octadecatrienoic acidArachidonic acid5,8,11,14-Eicosatetraenoic acidEPA5,8,11,14,17-Eicosapentaenoic acidDHA4,7,10,13,16,19-Docosahexenoic acid	Oleic acid9-Octadecenoic acid $CH_3(CH_2)_7CH=CH(CH_2)_7COOH$ Linoleic acid9,12-Octadecadienoic acid $CH_3(CH_2)_4(CH=CHCH_2)_2(CH_2)_6COOH$ α -Linolenic acid9,12,15-Octadecatrienoic acid $CH_3CH_2(CH=CHCH_2)_3(CH_2)_6COOH$ γ -Linolenic acid6,9,12-Octadecatrienoic acid $CH_3(CH_2)_4(CH=CHCH_2)_3(CH_2)_6COOH$ γ -Linolenic acid5,8,11,14-Eicosatetraenoic acid $CH_3(CH_2)_4(CH=CHCH_2)_3(CH_2)_3COOH$ Arachidonic acid5,8,11,14-Eicosatetraenoic acid $CH_3(CH_2)_4(CH=CHCH_2)_4(CH_2)_2COOH$ EPA5,8,11,14,17-Eicosapentaenoic acid $CH_3CH_2(CH=CHCH_2)_5(CH_2)_2COOH$ DHA4,7,10,13,16,19-Docosahexenoic acid $CH_3CH_2(CH=CHCH)_6CH_2COOH$

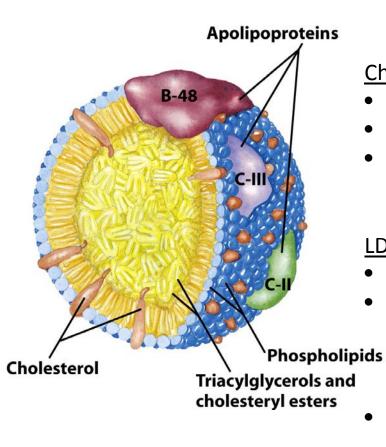
Chain length : number of double bonds - position of 1st double bond from CH₃ terminal

The importance of omega-3 FA

•Blood fat (<u>triglycerides</u>). Fish oil supplements can lower elevated triglyceride levels. Having high levels of this blood fat puts you at risk for heart disease. DHA alone has also been shown to lower triglycerides.

•<u>Rheumatoid arthritis</u>. Fish oil supplements (EPA+DHA) can curb stiffness and joint pain. Omega-3 supplements also seem to boost the effectiveness of anti-inflammatory drugs.

•<u>Depression</u>. Some researchers have found that cultures that eat foods with high levels of omega-3s have lower levels of depression. Fish oil also seems to boost the effects of antidepressants and may help the depressive symptoms of bipolar disorder.


•Baby development. DHA appears to be important for visual and neurological development in infants.

•<u>Asthma</u>. A diet high in omega-3s lowers inflammation, a key component in asthma. But more studies are needed to show if fish oil supplements improve lung function or cut the amount of medication a person needs to control the condition.

•<u>ADHD</u>. Some studies show that fish oil can reduce the symptoms of ADHD in some children and improve their mental skills, like thinking, remembering, and learning. But more research is needed in this area, and omega-3 supplements should not be used as a primary treatment.

•<u>Alzheimer's</u> disease and dementia. Some research suggests that omega-3s may help protect against Alzheimer's disease and dementia, and have a positive effect on gradual memory loss linked to aging. But that's not certain yet.

The Good, the Bad and the Ugly

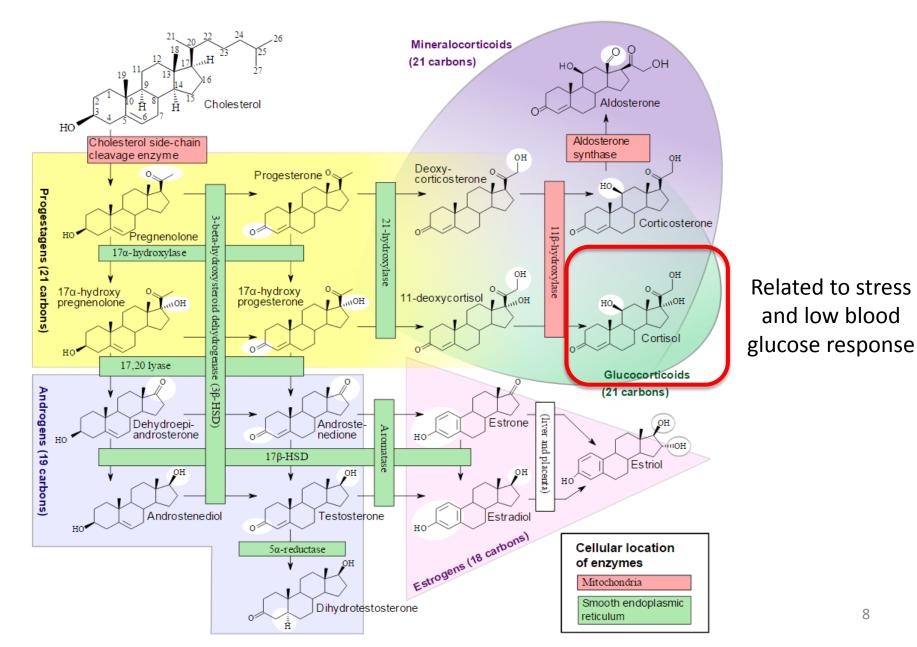
Chlyomicrons

- Dietary fat/cholesterol transport to cells
- Originate in intestinal mucosa cells
- 1-2% protein, 85-88% triglycerides, ~8% phospholipids, ~3% cholesteryl esters and ~1% cholesterol

0 8

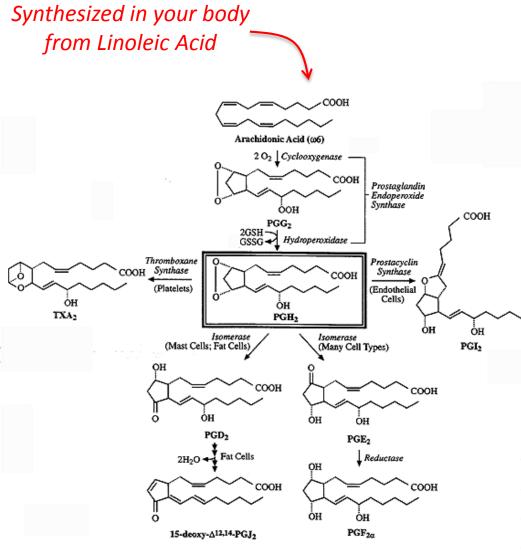
Chylomicron

- LDL (Low Density Lipoprotein) "Bad" Cholestrol
- Cholesterol transport from liver to cells
- One of the lipoproteins (B-100) is recognized by LDL receptors. This triggers encapsulation of LDL and


ids release of cholesterol to be used in the plasma membrane

 20-22% protein, 10-15% triglycerides, 20-28% phospholipids, 37-48% cholesteryl esters, and 8-10% cholesterol

HDL (High Density Lipoprotein)


- Cholesterol transport to liver for degradation (or recycling)
- Cholesterol "scavenger"
- 55% protein, 3-15% triglycerides, 26-46% phospholipids, 15-30% cholesteryl esters, and 2-10% cholesterol

Steroid Hormones

8

Omega 6's and Prostaglandin Hormones

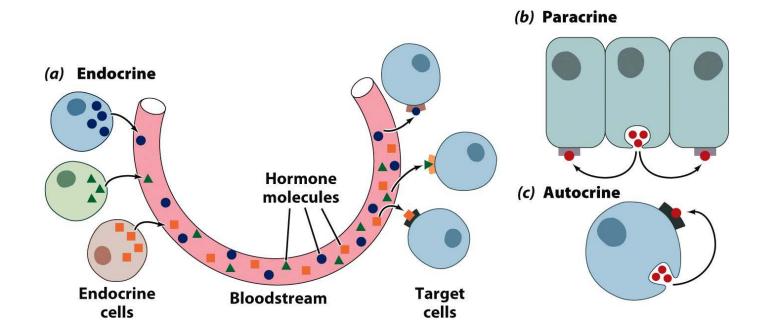
Some of the physiological effects of Prostaglandins:

- The inflammatory response (rheumatoid arthritis).
 - The production of pain and fever.
 - The regulation of blood pressure.
 - The induction of blood clotting.
 - The control of several reproductive functions such as the induction of labor.
- The regulation of the sleep / wake cycle.

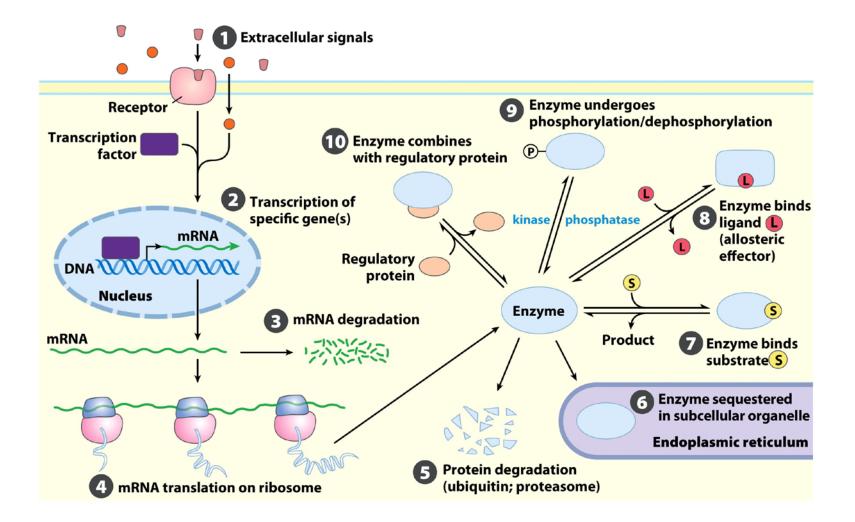
Notable: Cyclooxygenase (COX-2) is the target of many anti-inflammatory drugs

- Aspirin
- Naproxen (Aleve)
- Ibuprofen (Motrin, Advil)

Hormones and Classifications

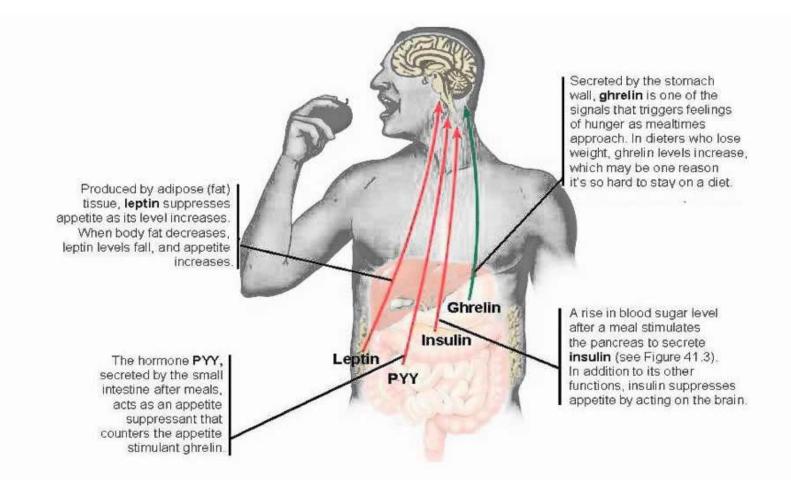

In eukaryotes, intercellular signals occur through mediated release of *hormones* (chemical messengers)

Classified by the distance over which the carry a message


Endocrine hormones – act on cells distant from the site of release

Paracrine hormones – act on cells close to the site of release

Autocrine hormones – act on the same cell


How do Hormones Work?

Hunger/Satiation

Hunger/Satiation

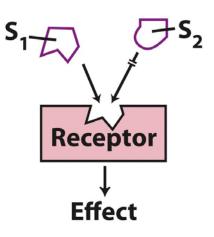
General Features of Signal Transduction

ΗÑ

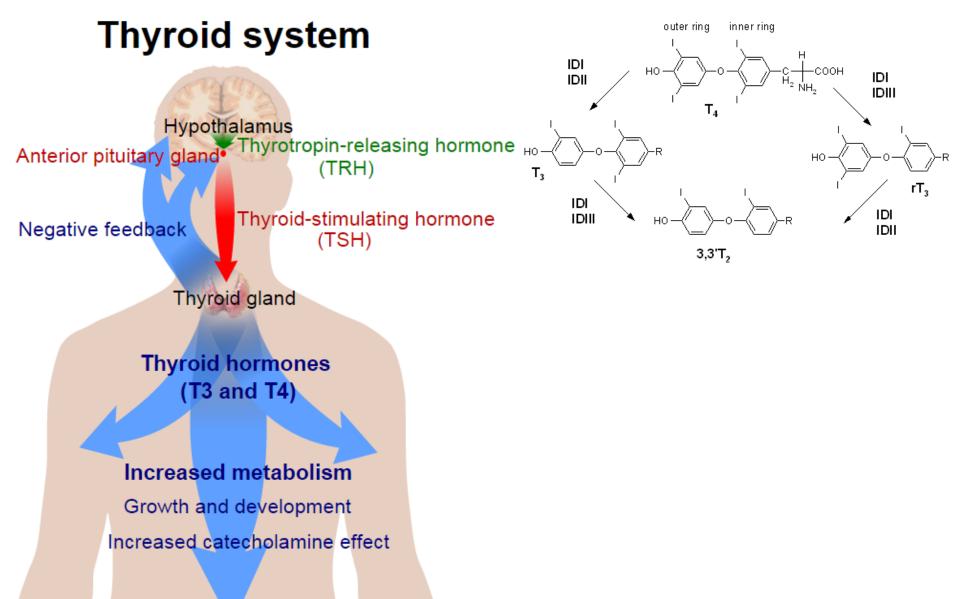
ΝH

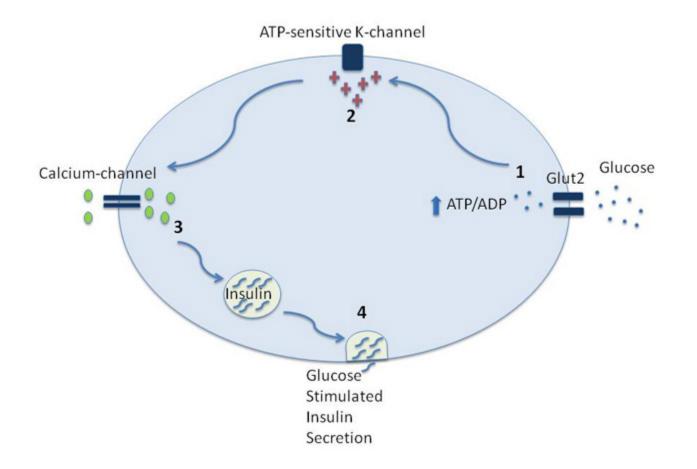
١H

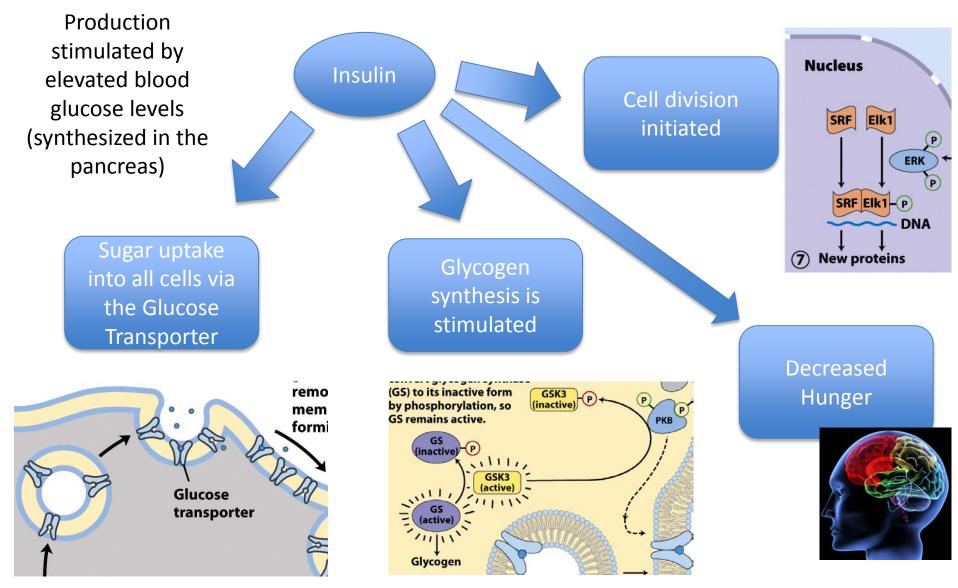
Specificity is achieved by precise molecular complementarity between the signal and receptor molecules

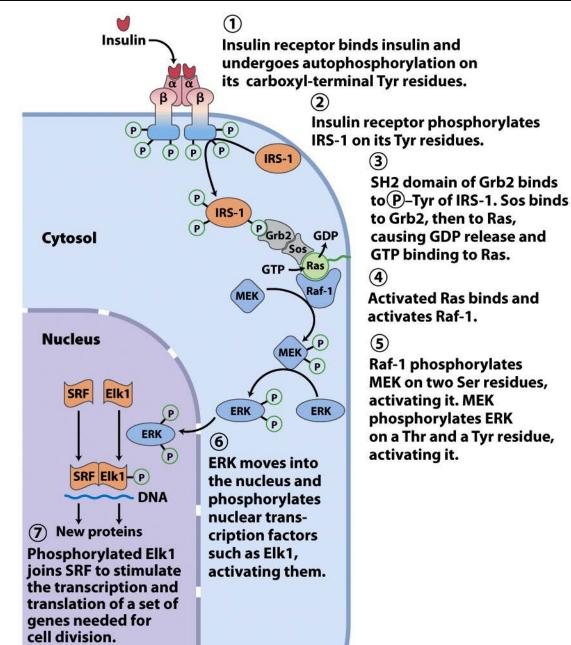

What types of IM forces do you think guide the specificity?

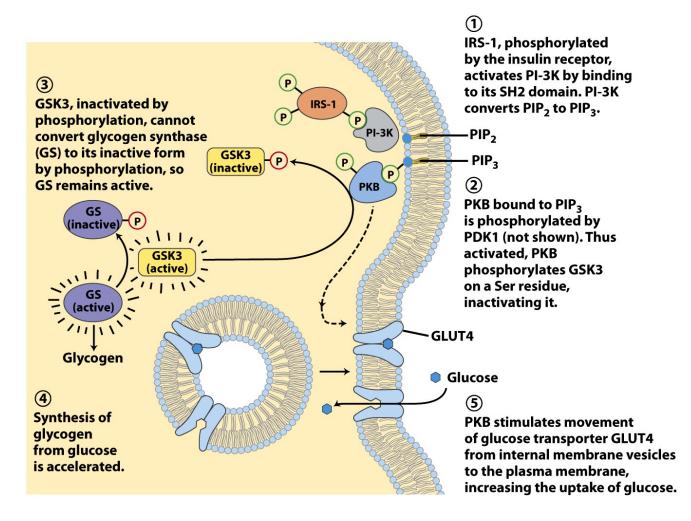
- **1. Affinity** of receptors for signal molecules *Often sub-nanomolar*
- 2. Cooperativity in the interaction Small changes in ligand concentration results in large changes in receptor activation
- 3. **Amplification** of the signal *Receptor is activated, which catalyzes the activation of many equivalents of a 2nd enzyme....*

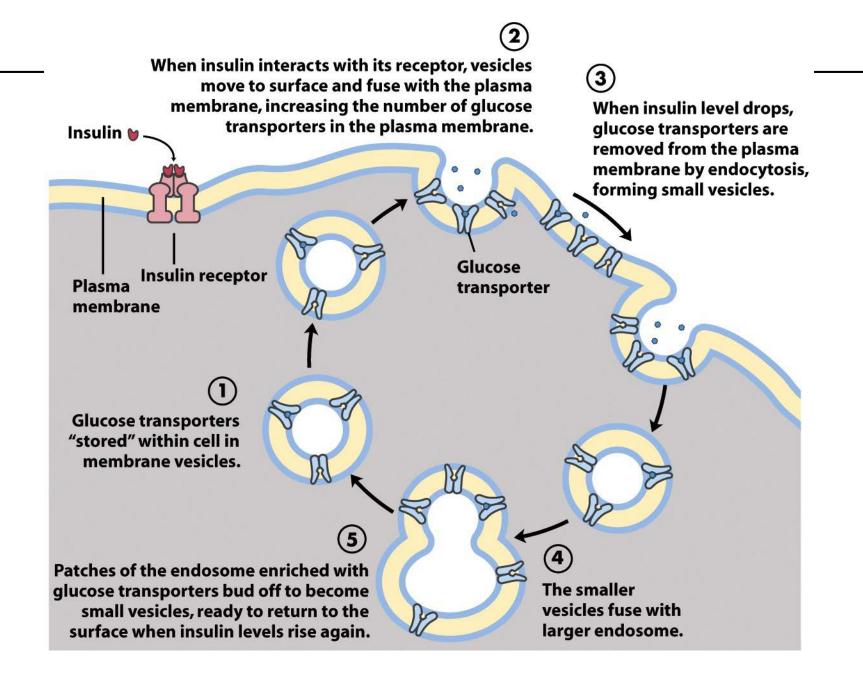

Extra specificity built into expression profile of certain cell types

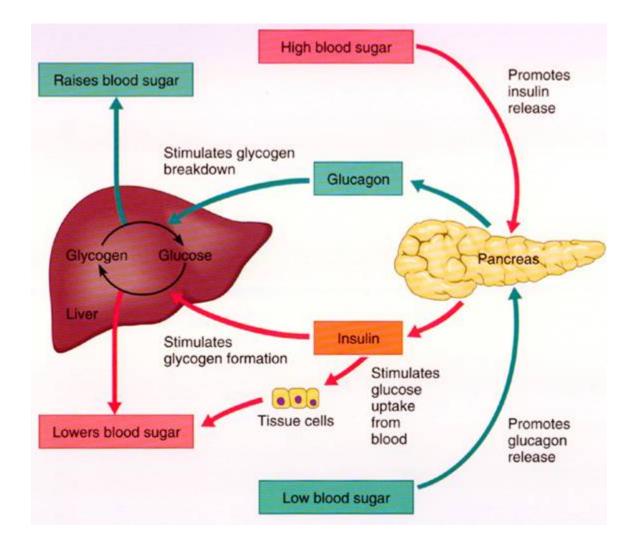

^{NH2} Thyrotropin-releasing hormone triggers response in pituitary cells but not hepatocytes

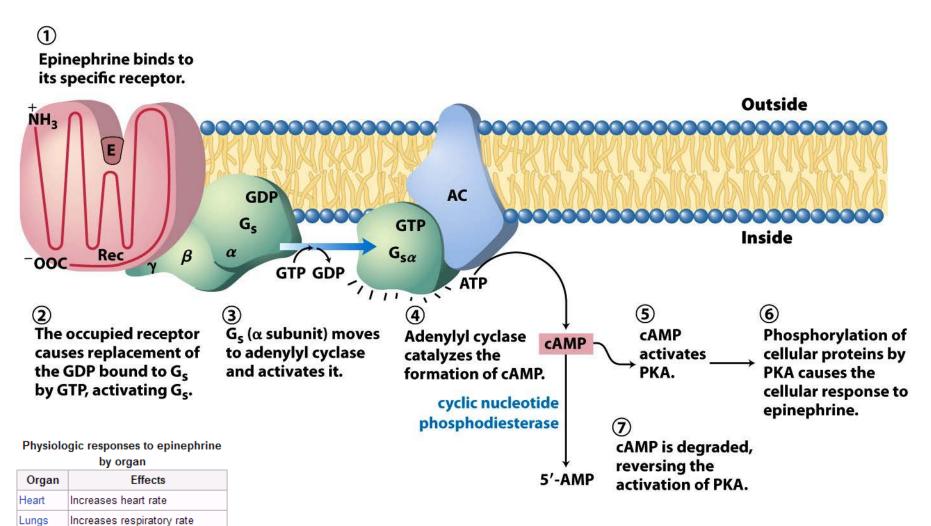

Epinephrine alters glycogen metabolism in hepatocytes but not adipocytes




Thyroid Hormones







The Physiological Response to Blood Sugar

Epinepherine Receptor Action (same as Glucagon)

Systemic Vasoconstriction or vasodilation

Systemic Triggers lipolysis Systemic Muscle contraction

Stimulates glycogenolysis

Liver

cAMP/PKA Regulated Genes

TABLE 12-2	Some Enzymes and Other Proteins Regulated by cAMP-Dependent Phosphorylation (by PKA)			
Enzyme/protein		Sequence phosphorylated*	Pathway/process regulated	
Glycogen synthase		RASCTSSS	Glycogen synthesis	
Phosphorylase α subunit β subunit	b kinase	VEFRRLSI RTKR <mark>S</mark> GSV	Glycogen breakdown	
Pyruvate kinase	(rat liver)	GVLRRASVAZL	Glycolysis	
Pyruvate dehyd	rogenase complex (type L)	GYLRRASV	Pyruvate to acetyl-CoA	
Hormone-sensit	tive lipase	PMRRSV	Triacylglycerol mobilization and fatty acid oxidation	
Phosphofructo	sinase-2/fructose 2,6-bisphosphatase	LQRRRG <mark>S</mark> SIPQ	Glycolysis/gluconeogenesis	
Tyrosine hydrox	ylase	FIGRRQ <mark>S</mark> L	Synthesis of ∟-dopa, dopamine, norepinephrine, and epinephrine	
Histone H1		AKRKA <mark>S</mark> GPPVS	DNA condensation	
Histone H2B		KKAKA <mark>S</mark> RKESYSVYVYK	DNA condensation	
Cardiac phosph	olamban (cardiac pump regulator)	AIRRAST	Intracellular [Ca ²⁺]	
Protein phosph	atase-1 inhibitor-1	IRRRRPTP	Protein dephosphorylation	
PKA consensus	sequence [†]	xR[RK]x <mark>[S</mark> T]B	Many	