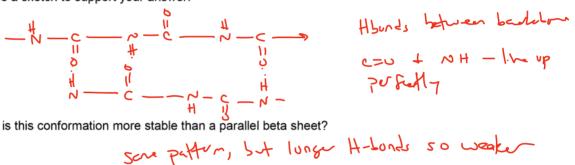
Exam2

Wednesday, March 22, 2017 11:33 AM

Chem 106 Exam 2


Name

This exam is schedule for 75 minutes and I anticipate it to take the full time allotted. You are free to leave if you finish. In multiple part problems, points awarded will not be penalized for incorrect answer on previous parts, so simply **move on if you get stuck on one part**. If you need to, make up an answer for the previous part. Always neatly show work for partial credit.

- 1. For each of the following, indicate whether backbone or side chain interactions are more important in stabilizing the structure.
 - a. Secondary protein structure back bore
 - b. Tertiary protein structure Side chains
- 2. What is the major stabilizing force that keeps a protein folded in the correct conformation? Explain why this is so effective.

Hydrophobic effect > hydrophobic side chan are packed together at to pokin core. This results in a huse restructuring of H20 that $\Lambda \leq \mathcal{A}$.

3. Clearly describe the H-bonding pattern than stabilizes an anti-parallel beta sheet. You are encouraged to use a sketch to support your answer.

Why is this conformation more stable than a parallel beta sheet?

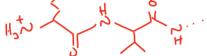
4. Consider a reaction that has an activation energy of 8.6 kJ mol⁻¹. What percent of molecules will have

enough energy to react at 300 °C?

$$-\frac{1}{8}\sqrt{273.15} \times 8.00 \frac{1}{800}$$

 $-\frac{8608}{8.014.573.15} = 0.1645$
 16.45%

5. Compare the two peptides below. Circle the peptide that has the largest log P value?


Tryptophan – Alanine – Serine – Leucine

Isoleucine – Alanine – Phenylalanine - Methionine

- 6. Consider a peptide:
 - glutamic acid valine serine lysine alanine leucine cysteine.
 - a. Sketch the **first two amino acids** in this this peptide as you would expect to see it at neutral pH.

All non

~2

b. Determine the pl of this peptide.

$$H_{5}X^{+2} \ge H_{4}x^{+1} \ge H_{3}X \ge H_{2}X^{-1} \ge HX^{-2} \ge X^{-2}$$

2.10 4.07 8.37 10.7 10.51
 $PI = 0.22$

c. Is this peptide susceptible to disulfide bond formation? Why?

40

ni

- d. Answer one of these:
 - i. If this peptide were part of a peripheral membrane protein, would it be more likely to be in an alpha helix conformation or a beta skeet?

6

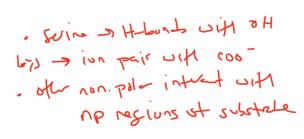
- ii. What would the charge of this peptide be at pH 10? Round to the nearest whole number. $M_{P} = \frac{1}{10}$
- iii. Which amino acid side chain in this peptide is most susceptible to phosphorylation? Sketch product of the phosphorylation modification.

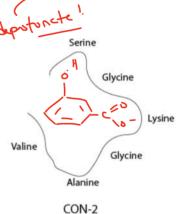
7. Clearly explain three ways that the rate of a reaction can be changed. In your answer, make sure to explain why each change would result in a modified reaction rate. RK=h(A) (i) AT -> chave k (2) DEn by adding a catalyst -> changes ke (3) (CA) - change rete by influeing # of collisions 8. The reaction A \rightarrow B has been shown to have a rate constant of 72.60 M⁻¹s⁻¹. a. Write a rate law for this reaction. Units and under ! b. What is the rate if [A] = 100 mM? V. 0.1 M rake 72.6 (01)2 = 0.726 M \leq Label the Y-axis with [A], In[A] or 1/[A] for the reaction above. and order DAD d. What is the slope of the graph? Make sure to include (A)= kt + L k= 72.6 M-15-1 units. e. The y-intercept of this graph is 0.03. What is the concentration of A at t = 0? Time (s) $L_{A} = 0.03 \quad (A)_0 = 33.33 M$ f. How much A is remaining after 1 ms? L=72.6 (0.001) + 0.0] L ~ 0.1076 (A) = 9.75 M 5

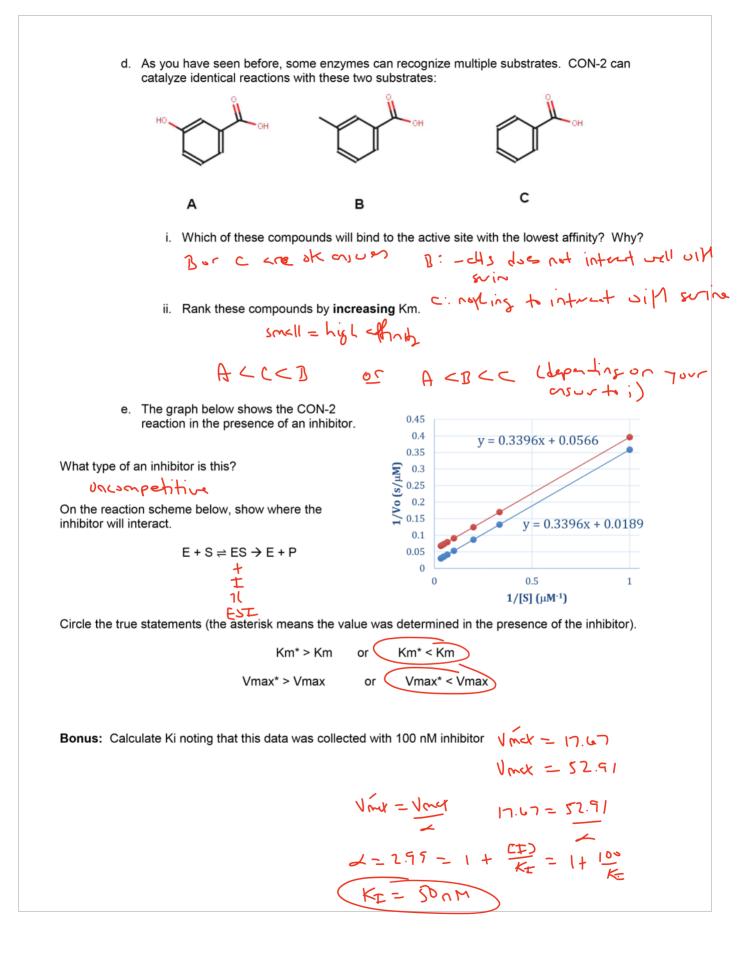
9. The enzyme CON-2 is responsible for catalyzing the following reaction:

a. What type of reaction is this? How do you know?

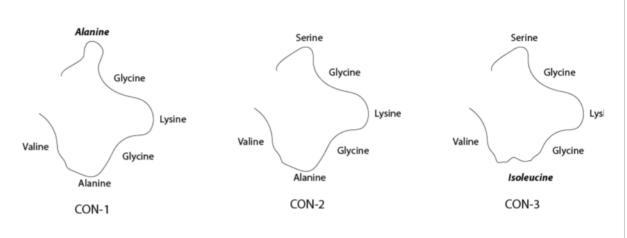
- b. The turnover number $(3.5 \times 10^{-6} \text{ s}^{-1})$ and the catalytic efficiency $(1.4 \times 10^7 \ \mu\text{M}^{-1}\text{s}^{-1})$ were determined in an experiment using 0.1 μ M CON-2 and a very large excess of the 2nd reactant (so only the carboxylic acid containing reactant (S) influences the rate).
 - i. Determine Km for S


ii.


$$Cct \cdot eft = \frac{1}{Km} = \frac{1}{Km} = \frac{1}{1.4K0^{7}} \frac{1}{m} \frac{1}{5} = \frac{1}{5} \frac{5}{10} \frac{5}{5} \frac{1}{Km} = \frac{1}{Km} = \frac{1}{Km} = \frac{1}{Km} = \frac{1}{Km} = \frac{1}{Km} = \frac{1}{5} \frac{1}{10} \frac{1}{5} \frac{1}{10} \frac{1}{10} = \frac{1}{5} \frac{1}{10} \frac{1}{10}$$

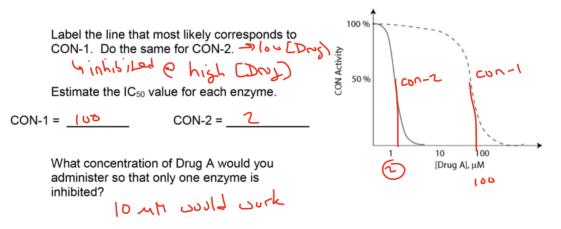

iii. Calculate the rate of the reaction when [S] = 360 nM.

$$V = V_{md} (J) = \frac{3.5 \times 10^{5} (0.36 \text{ M})}{0.75 + 0.36} = \frac{206557 \text{ M}}{3}$$


c. A sketch of the active site of CON-2 is shown below. Orient the carboxylic acid containing substrate into the active site and explain why the active site is ideal for binding to this compound.



10. Three different isoforms of the enzyme from the previous problem have been discovered. The active site of each of these is shown below with the single difference from CON-2 emphasized by bold labeling.



- a. The molecule shown to the right has been shown to be an effective inhibitor of CON-2 but not CON-1. i. Why? I off grow will bind to serie
 - but pot almin. This means it will inhibit cor-2, not con-1.

11

ii. Consider the graph below, which shows the activity of CON-1 and CON-2 (100% = no inhibition, 0% = fully inhibited) vs. [Drug A].

iii. Using Drug A as a template, design a drug that would inhibit CON-2 but not CON-3.

-Si - SH swent fit in smeller CON. 3 --Kin sile

		Francium 87 Fr (223) 0.7	Cesium 55 Cs 132.91 0.7	Rubidium 37 Rb 85.47 0.8	19 39.10 0.8	11 Na 22.99 0.9	1.01 2.1 Lithium 6.94 6.94
**ac	*lanth	Radium 88 (226) 0.9	Barium 56 Ba 137.33 0.9	Strontium 38 Sr 87.62 1.0	20 20 40.08 1.0	12 Mg 24.31 1.2	2 Beryllium 4 9.01 1.5
**actinides	*lanthanides	89-102 **	57-70				
Actinium 89 Ac (227) 1.1	Lanthanum 57 La 138.91 1.1	103 Lr (262) 	Lutetium 71 Lu 174.97 1.1	Yttrium 39 4 88.91 1.2	21 21 44.96 1.3	ω	Average relative are rounded to t decimal places. All average mas be treated as m quantities, and t significant figur
Thorium 90 Th 232.04 1.3	<u> </u> →	Rutherfordium 104 Rf (261) 	Hafnium 72 Hf 178.49 1.3	Zirconium 40 2r 91.22 1.4	1/tanium 22 Ti 47.88 1.5	4	Average relative masses are rounded to two decimal places. All average masses are to be treated as measured quantities, and subject to significant figure rules.
Protactinium 91 231.04 1.5	Praseodymium 59 Pr 140.91 1.1	Dubnium 105 (262)	Tantalum 73 180.95 1.5	Niobium 41 92.91 1.6	Vanadium 23 50.94 1.6	σ	asses b s are to s are to sured bject to ules.
Uranium 92 238.03 1.4		Seaborgium 106 Sg (266)	Tungsten 74 183.84 1.7	42 42 95.94 1.8	24 24 52.00 1.6	6 EIEC	2
Neptunium 93 (237) 1.4	Promethium 61 Pm (145) 1.1	Bohrium 107 Bh (264)	Rhenium 75 Re 186.21	Technetium 43 Tc (98) 1.9	Manganese 25 Mn 54.94 1.5	6 7 8	Element Name Symbol
Plutonium 94 (244) 1.3	Samarium 62 Sm 150.36	Hassium 108 HS (269)	Osmium 76 0S 190.23 2.2	Ruthenium 44 Ru 101.07 2.2	1.8		
Americium 95 Am (243) 1.3	Europium 63 Eu 151.97 1.1	Meitnerium 109 Mt (268)	Iridium 77 Ir 192.22 2.2	Rhodium 45 Rh 102.91 2.2	Cobat 27 58.93 1.8	9	• Mercury 80 ← 200.59 ◆
Curium 96 Cm (247) 1.3	Gadolinium 64 Gd 157.25 1.2	Darmstadtium 110 DS (271)	Platinum 78 Pt 195.08 2.2	Palladium 46 Pd 106.42 2.2	Nickel 28 58.69 1.8	10	
Berkelium 97 Bk (247) 1.3		111 Rg (272)	196.	Silver 47 Ag 107.87 1.9	63.55	±	Atomic Number Average Mass
Californium 98 Cf (251) 1.3	Dysprosium 66 Dy 162.50 1.2	Copernicium 112 Cn (277)	Mercury 80 200.59 1.9	Cadmium 48 Cd 112.41 1.7	200 30 65.39 1.6	12	ge r
Einsteinium 99 ES (252) 1.3		Ununtrium 113 Uut (284)	Thallium 81 204.38 1.8	Indium 49 114.82 1.7	Gallium 31 69.72 1.6	13 AI 26.98	13 Boron 5 10.81 2.0
Fermium 100 Fm (257) 1.3		Flerovium 114 (289)	82 82 207.20 1.8	Tin 50 Sn 118.71 1.8	Germanium 32 72.61 1.8	28.09 1.8	14 Carbon Carbon 12.01
Mendelevium 101 Md (258) 1.3	Thulium 69 Tm 168.93 1.3	Ununpentiur 115 Uup (288)	Bismuth 83 208.98 1.9		Arsenic S 33 As 74.92 2.0	15 P 30.97 2.1	15 Nitrogen 7 14.01 3.0
n Nobelium 102 No (259) 3 1.3	Ytterbium 70 173.04 1.1	1 Livermoriun 116 Lv (293)	Polonium 84 (209) 2.0	Tellurium 52 Te 127.60 2.1	Selenium 34 78.96 2.4	32.07 2.5	0xygen 03.5
		m Ununpentium Livermotium Ununseptium Unun	Astatine 85 At (210) 2.2	Iodine 53 126.90 2.5			17 Fluorine 9 9 9 9 9 9
		^m Ununoctiur 118 (294)	Radon 86 (222) 2.4		83.80 3.0		

$k = Ae^{\frac{-E_a}{RT}}$	$R = 8.314 Jmol^{-1}K^{-1}$	$v_0 = \frac{v_{max}[S]}{Km \ [S]}$
$[A] = -kt + [A]_0$	$\ln[A] = -kt = \ln[A]_0$	$\frac{1}{[A]} = kt + \frac{1}{[A]_0}$
$\propto = 1 + \frac{[I]}{\kappa_I}$	$v_{max} = k_2[E]_{total}$	

Amino Acid	-NH3 ⁺	-CO ₂ H	Side chain	
Glycine, Gly	9.78	2.35		
Alanine, Ala	9.87	2.35		
Valine, Val	9.74	2.29		
Leucine, Leu	9.74	2.33		
Isoleucine, Ile	9.76	2.32		
Phenylalanine, Phe	9.31	2.20		
Tryptophan, Trp	9.41	2.46		
Tyrosine, Tyr	9.21	2.20	10.46	
Histidine, His	9.33	1.80	6.04	
Serine, Ser	9.21	2.19		
Threonine, Thr	9.10	2.09		
Methionine, Met	9.28	2.13		
Cysteine, Cys	10.70	1.92	8.37	
Aspartic Acid, Asp	9.90	1.99	3.90	
Glutamic Acid, Glu	9.47	2.10	4.07	
Asparagine, Asn	8.72	2.14		
Glutamine, Gln	9.13	2.17		
Lysine, Lys	9.06	2.16	10.54	
Arginine, Arg	8.99	1.82	12.48	
Proline, Pro	10.64	1.95		