1. Which of the following molecules can be reduced by KI? Ga^{3+} H_2O H_2O_2 $Cr_2O_7^{2-}$ CrO_4^{2-} F_2 Cl_2 Fe(OH)₃ 2. Assign oxidation states to each atom in the following molecules: VO_2^+ VO^{2+} $S_2O_6^{2-}$ H_2SO_4 Au^+ Cl_2 **HClO** Au 3. Determine the oxidation state or EACH carbon (you need the Lewis structure approach for this). - 4. Combustion reactions are redox reactions. Determine the total number of electrons that are passed from carbon to oxygen when each of the molecules in problem 2 is combusted. Note that NH₃ is a product in the combustion of the second and third molecules. - Balance this redox reaction and determine E°. $$VO_2^+ + H_2SO_3 (aq) \rightleftharpoons VO^{2+} + S_2O_6^{2-}$$ Consider the following reaction: $$Au^{+} + Cl_{2}(g) \rightleftharpoons HClO(aq) + Au(s)$$ - a. Balance the reaction - b. Identify the Oxidizing Agent - c. Identify the Reducing Agent - d. Determine E° and ΔG° - e. Determine K at standard conditions. - f. If $[Au^+] = 10 \mu M$, $[Cl_2] = 5 \mu M$, and [HClO] = 10 mM, determine if the reaction is spontaneous at neutral pH - g. If $[Au^+] = 10 \,\mu\text{M}$, $[Cl_2] = 5 \,\mu\text{M}$, and $[HClO] = 10 \,\text{mM}$, determine the pH that will make this reaction nonspontaneous at 50 °C. Recall that $$\Delta G^o = -nFE^0$$ $$\Delta G = \Delta G^0 + RT lnQ$$ $$\Delta G = \Delta G^0 + RT lnQ \qquad \qquad R = 8.314^{J} / mol K$$ $F = 96485 \frac{J}{mol V}$