1. Identify the SI Units for each of the following:

Area of a trapezoid \rightarrow _____ Density →_____ 2. The first 8 ionization energies of element "X" are shown below (in aJ). IE₁ IE₄ IE_2 IE₃ IE_5 IE_6 IE₇ IE₈ 4.84 1.68 3.17 8.24 10.42 35.32 42.23 49.60 How many valence electrons does X have? Briefly justify your answer.

What group does X belong to?

Clearly explain why the difference between IE_3 and IE_4 is greater than the difference between IE_2 and IE_3 .

- 3. What is meant by particle-wave duality and why is it important? Be specific.
- 4. What is meant by "quantization of energy"?
- 5. Determine the **energy and frequency** of the photon needed to move an electron from the ground state of a hydrogen atom to the 7th energy level. Report your answer in SI units.

Energy _____

Frequency _____

- 6. Write the ground state electron configuration for each of the following. You may use shorthand notation for part b and c. Circle the valence electrons on each atom.
 - a. Silicon
 - b. Silver (Z=47)
 - c. Bismuth (Z=83)
- 7. Consider potassium:
 - a. Three stable isotopes of potassium exist. Using the data in the table, determine the natural abundance of the ⁴¹K.

Isotope	Exact Mass	Natural Abundance		
	(amu)	Abundance		
Potassium-39	38.96			
Potassium-40	39.96	0.012 %		
Potassium-41	40.96			

- b. How many neutrons are present in the nucleus of the ⁴¹K?
- c. How many protons are present in the nucleus of the ⁴¹K?
- d. Determine the electron configuration of potassium.

Long form:

Condensed:

e. When a photon with a wavelength of 285.64 nm strikes a potassium atom, an electron is ejected with no kinetic energy. What is the threshold energy of potassium?

f. Show a **complete** orbital energy diagram for the ground state and first excited state of a potassium atom. Make sure to label all orbitals and show all electrons.

Ground State

First Excited State

g. The radius of ⁴¹K is 243 pm. Calculate the density in SI units.

Equations and constants:

$$E = hv \qquad c = \lambda v \qquad h = 6.626 \times 10^{-34} Js \qquad c = 2.998 \times 10^8 m s^{-1}$$

$$E_n = \frac{-2.18 \times 10^{-18} J}{n^2}$$

$$\Delta E = E_{final} - E_{initial}$$

$$E_K = \frac{1}{2} m v^2$$

$$E_{potential} \propto \frac{q_1 q_2}{r}$$

$$m_{electron} = 9.109 \times 10^{-31} kg$$

$$m_{proton} = 1.673 \times 10^{-27} kg$$

$$m_{neutron} = 1.675 \times 10^{-27} kg$$

$$\lambda_{debroglie} = \frac{h}{2v}$$

$$V_{sphere} = \frac{4}{3} \pi r^3$$

$$A_{circle} = \pi r^2$$

		Francium 87 (223)	Ceslum 55 CS 132.91	Rubidium 37 Rb 85.47	Potassium 19 39:10	6.94 C. 3	1.01 T -
**ac	*lanth	Radium 88 (226)	Barium 56 Ba 137.33	Strontium 38 87.62	Laicium Caicium 20 40.08	Berylium 4 9.01 Magnesium	N
**actinides	*lanthanides	89-102 **	57-70 *				
Actinium 89 Ac (227)	Lanthanum 57 La 138.91	103 Lr (262)	Lutetium 71 Lu 174.97	Yttrium 39 88.91	3 Scandium 21 8 44.96		
Thorium 90 Th 232.04	Cerium 58 Ce 140.12	Rutherfordium 104 Rf (267)	Hafnium 72 Hf 178.49	Zirconium 40 91.22	4 Titanium 22 Ti 47.88		
Protactinium 91 Pa 231.04	Praseodymium 59 Pr 140.91	Dubnium 105 Db (268)	^{Tantalum} 73 180.95	Niobium 41 92.91	5 23 50.94		
Uranium 92 238.03	Neodymium 60 Nd 144.24	Seaborgium 106 Sg (271)	Tungsten 74 183.84	Molybdenum 42 95.94	6 24 52.00		
Neptunium 93 Np (237)	Promethium 61 Pm (145)	Волліит 107 ВЛ (272)	Rhenium 75 186.21	Technetium 43 Tc (98)	7 25 25 54.94		
Plutonium 94 Pu (244)	Samarium 62 Sm 150.36	Hassium 108 HS (270)	^{Osmium} 76 190.23	Ruthenium 44 101.07	8 55.85		
Americium 95 Am (243)	Europium 63 Eu 151.97	Meitnerium 109 Mt (276)	Iridium 77 Ir 192.22	Rhodium 45 Rh 102.91	9 27 58.93		
^{Curium} 96 (247)	Gadolinium 64 Gd 157.25	Darmstadtium 110 DS (281)	Platinum 78 Pt 195.08	Palladium 46 Pd 106.42	10 18 28 58.69		
Berkelium 97 BK (247)	^{тегыим} 65 ТБ 158.93	Roentgenium 111 (280)	79 79 Au 196.97	Silver 47 Ag 107.87	11 29 63.55		
Californium 98 Cf (251)	Dysprosium 66 Dy 162.50	Copernicium 112 (285)	мегсилу 80 200.59	48 Cadmium	12 30 5.39		
Einsteinium 99 ES (252)	нојтіцт 67 Но 164.93	113 Ununtium Uut (284)	Thallium 81 204.38	Indium 49 114.82	Gallium Gallium 69.72	Auminum 40.81	13
100 Fm (257)	Erbium 68 Er 167.26	114 Ununquadium 114 (289)	Lead 82 Pb 207.20	50 50 Sn 118.71	Si 28.09 28.09 32 Ge 72.61	12.01	4
Mendelevium 101 Md (258)	Thulium 69 Tm 168.93	115 Ununpentium (288)	83 Bi 208.98	Antimony 51 Sb 121.76	30.97 333 33 74.92	Phosphorus	15
102 No No (259)	Ytterbium 70 Yb 173.04	^{Ununhexium} 116 (293)	^{Polonium} 84 (209)	^{Tellurium} 52 127.60	32.07 32.07 34 78.96	16.00 8 sulfur	16
LL		^{Ununseptium} 117 Uus (294?)	Astatine 85 At (210)	lodine 53 126.90	35.45 Beomine 35 79.90	19.00	17
		118 Ununoctium Uuo (294)	86 86 (222)	54 54 131.29	^{Krypton} 39.95 36 83.80	20.18 20.18	Helium 2 4.00