1. Identify the SI Units for each of the following:

Area of a trapezoid \rightarrow \qquad Density \rightarrow \qquad
2. The first 8 ionization energies of element " X " are shown below (in aJ).

IE	IE	IE_{1}	IE	IE	IE	IE_{4}	IE
1.68	3.17	4.84	8.24	10.42	35.32	42.23	49.60

How many valence electrons does X have? Briefly justify your answer.

What group does X belong to?

Clearly explain why the difference between IE_{3} and IE_{4} is greater than the difference between IE_{2} and IE_{3}.
3. What is meant by particle-wave duality and why is it important? Be specific.
4. What is meant by "quantization of energy"?
5. Determine the energy and frequency of the photon needed to move an electron from the ground state of a hydrogen atom to the $7^{\text {th }}$ energy level. Report your answer in SI units.

Energy \qquad
Frequency \qquad
6. Write the ground state electron configuration for each of the following. You may use shorthand notation for part b and c. Circle the valence electrons on each atom.
a. Silicon
b. Silver $(Z=47)$
c. Bismuth $(Z=83)$
7. Consider potassium:
a. Three stable isotopes of potassium exist. Using the data in the table, determine the natural abundance of the ${ }^{41} \mathrm{~K}$.

Isotope	Exact Mass (amu)	Natural Abundance
Potassium-39	38.96	
Potassium-40	39.96	0.012%
Potassium-41	40.96	

b. How many neutrons are present in the nucleus of the ${ }^{41} \mathrm{~K}$?
c. How many protons are present in the nucleus of the ${ }^{41} \mathrm{~K}$?
d. Determine the electron configuration of potassium.

Long form:
Condensed:
e. When a photon with a wavelength of 285.64 nm strikes a potassium atom, an electron is ejected with no kinetic energy. What is the threshold energy of potassium?
f. Show a complete orbital energy diagram for the ground state and first excited state of a potassium atom. Make sure to label all orbitals and show all electrons.

g. The radius of ${ }^{41} \mathrm{~K}$ is 243 pm . Calculate the density in SI units.

Equations and constants:

$$
\begin{aligned}
& E=h v \quad c=\lambda v \quad h=6.626 \times 10^{-34} \mathrm{Js} \quad c=2.998 \times 10^{8} \mathrm{~ms}^{-1} \\
& E_{n}=\frac{-2.18 \times 10^{-18} \mathrm{~J}}{n^{2}} \\
& \Delta E=E_{\text {final }}-E_{\text {initial }} \\
& E_{K}=\frac{1}{2} m v^{2} \\
& E_{\text {potential }} \propto \frac{q_{1} q_{2}}{r} \\
& m_{\text {electron }}=9.109 \times 10^{-31} \mathrm{~kg} \\
& m_{\text {proton }}=1.673 \times 10^{-27} \mathrm{~kg} \\
& m_{\text {neutron }}=1.675 \times 10^{-27} \mathrm{~kg} \\
& \lambda_{\text {debroglie }}=\frac{h}{2 v} \\
& \qquad \\
& V_{\text {sphere }}=\frac{4}{3} \pi r^{3} \\
& A_{\text {circle }}=\pi r^{2}
\end{aligned}
$$

