Name ____

Use the following chemical equilibrium to answer all questions.

$$6 \text{ C (s)} + 3 \text{ H}_2 (g) \rightleftharpoons \text{C}_6 \text{H}_6 (g)$$

1. Write out the Kc expression.

$$K_C = \frac{[C_6 H_6]}{[H_2]^3}$$

- 2. As we've discussed in class, Kp can be calculated form Kc according to Kp = $Kc(RT)^{\Delta ngas}$. What is Δn_{gas} for this reaction? 1-3 = -2 (products reactants)
- 3. Predict the way in which the equilibrium will shift in response to each of the following changes (products formed, reactants formed, or no change)

Adding C (s) to the flask

Adding C₆H₆ to the flask.

Solids don't influence the equilibrium – no change

Adding product – so need to make reactants

- 4. Kc for this reaction is 12.82 M^{-2} . If 12 grams of carbon is combined with 0.25 M H_2 (g) and 3 M C_6H_6 (g):
 - a. Which way would the reaction shift? $Q = \frac{3}{0.25^3} = 192$ Q > K, so need to make more reactants.
 - b. Set up an ICE table. You do not need to do any algebra, but make sure you set up the table correctly.

	C (s)	3 H ₂	C ₆ H ₆
I	Solid – doesn't matter	0.25 M	3 M
С		+3x (shifts to make reactants!)	-X
E		0.25 + 3x	3 - x