\qquad

Use the following chemical equilibrium to answer all questions.

$$
6 \mathrm{C}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{~g})
$$

1. Write out the Kc expression. $\quad K_{C}=\frac{\left[C_{6} H_{6}\right]}{\left[H_{2}\right]^{3}}$
2. As we've discussed in class, Kp can be calculated form Kc according to $\mathrm{Kp}=\mathrm{Kc}(\mathrm{RT})^{\Delta \mathrm{ngas}}$. What is $\Delta \mathrm{n}_{\text {gas }}$ for this reaction? 1-3 $=-2 \quad$ (products - reactants)
3. Predict the way in which the equilibrium will shift in response to each of the following changes (products formed, reactants formed, or no change)

Adding C (s) to the flask
Solids don't influence the equilibrium - no change

Adding $\mathrm{C}_{6} \mathrm{H}_{6}$ to the flask.
Adding product - so need to make reactants
4. Kc for this reaction is $12.82 \mathrm{M}^{-2}$. If 12 grams of carbon is combined with $0.25 \mathrm{M} \mathrm{H}_{2}(\mathrm{~g})$ and $3 \mathrm{M} \mathrm{C}_{6} \mathrm{H}_{6}$ (g):
a. Which way would the reaction shift? $Q=\frac{3}{0.25^{3}}=192 \quad Q>K$, so need to make more reactants.
b. Set up an ICE table. You do not need to do any algebra, but make sure you set up the table correctly.

	$\mathbf{C}(\mathbf{s})$	$\mathbf{3 \mathbf { H } _ { 2 }}$	$\mathbf{C}_{6} \mathbf{H}_{6}$
I	Solid - doesn't matter	0.25 M	3 M
\mathbf{C}		$+3 x($ shifts to make reactants!)	-x
\mathbf{E}		$0.25+3 x$	$3-\mathrm{x}$

