1. Consider the synthesis of $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$ from solid carbon, oxygen gas $\left(\mathrm{O}_{2}\right)$, and hydrogen gas $\left(\mathrm{H}_{2}\right)$. Using the information below, determine the initial concentration of H_{2}

$$
\left[\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right]=138 \mathrm{mM} \text { and }\left[\mathrm{H}_{2}\right]=926 \mathrm{mM} \text { after } 10 \text { minutes. }
$$

2. Using this rearranged form of the Arrhenius equation shown below and the information provided, determine the activation energy for each reaction. Report your answer in $\mathrm{kJ} \mathrm{mol}^{-1}$.

$$
\ln k_{2}-\ln k_{1}=\frac{-E_{a}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)
$$

$\mathbf{T}_{\mathbf{1}} \mathbf{(K)}$	$\mathbf{T}_{\mathbf{2}} \mathbf{(K)}$	$\mathbf{k}_{\mathbf{1}}$	$\mathbf{k}_{\mathbf{2}}$
298.15	398.15	$82 \mathrm{M}^{-1} \mathrm{~s}^{-1}$	$272.8764 \mathrm{M}^{-1} \mathrm{~s}^{-1}$

3. For the reaction in problem 2, determine the order of the reaction and write the simplest rate law possible (e.g. $3^{\text {rd }}$ order would be rate $=k[A]^{3}$).
4. For the reaction below, use the method of initial rates to determine the rate constant and rate law. Make sure to use the correct units.

Experiment	$\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right](\mathbf{M})$	$\left[\mathrm{Br}_{2}\right](\mathbf{M})$	$\left[\mathbf{H}^{+}\right](\mathbf{M})$	Rate $\left(\mathbf{M ~ s}^{-1}\right)$
$\mathbf{1}$	1.00	1.00	1.00	4.0×10^{-3}
$\mathbf{2}$	1.75	1.00	1.00	7.0×10^{-3}
$\mathbf{3}$	1.75	1.40	1.00	9.8×10^{-3}
$\mathbf{4}$	1.00	1.40	2.00	11.3×10^{-3}

5. For each reaction in problem 4, determine the rate when the concentration of each reactant is 0.25 M .
6. For each of the following datasets, determine the rate law (including the rate constant with correct units) and the reactant concentration after $\mathbf{2 5}$ seconds has passed.

$\mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$	
Time (s)	$\left[\mathrm{NO}_{2}\right](\mathrm{M})$
0	0.0831
4.2	0.0666
7.9	0.0567
11.4	0.0497
15.0	0.0441

7. What is activation energy and how can it be decreased?
8. What are 3 ways to change the rate of a reaction?

$$
\begin{aligned}
& \text { 1. } 2 \mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(g) \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2} \\
& \text { rate }=\frac{\Delta\left[\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right]}{\Delta t}=\frac{-1}{2} \frac{\Delta\left[\mathrm{H}_{2}\right]}{\Delta t} \\
& \text { rate }=\frac{138-0}{10-0}=\frac{13.8 \mathrm{mM}}{\min }=-\frac{1}{2} \frac{926-x}{10-0} \quad x=1202 \mathrm{mM}
\end{aligned}
$$

2.

$$
\begin{aligned}
& \ln 272.8764-\ln 82=\frac{-E_{c}}{8.344}\left(\frac{1}{398.15}-\frac{1}{298.15}\right) \\
& E_{c}=\frac{-9.996}{-0.00084}=11899.9 \frac{\mathrm{~J}}{\mathrm{~mol}}=11.9 \mathrm{k5} / \mathrm{mol}
\end{aligned}
$$

3. $2^{\text {nd }}$ order \rightarrow you an tel this by looking at h units of h cote constant

$$
\text { rate }=k(A)^{2}
$$

4. \quad rate $=k\left(\mathrm{CH}_{3} \mathrm{COCH}_{3}\right)^{a}\left(\mathrm{BC}_{2}\right)^{b}\left[\mathrm{H}^{\text {}}\right)^{c}$

1 vs. $2 \frac{4 \times 10^{-3}}{7 \times 10^{-3}}=\frac{k}{k} \cdot \frac{(1)^{a}}{(1.75)^{a}} \cdot\left(\frac{1}{1}\right)^{b} \cdot\left(\frac{1}{1}\right)^{c}$
2 vs. $3 \quad \frac{7 \times 10^{-3}}{9.8 \times 10^{-3}}=\frac{k}{k} \cdot\left(\frac{1.75}{1.75}\right)^{a}\left(\frac{1}{1.4}\right)^{b}\left(\frac{1}{1}\right)^{c}$
3 vs. $4 \frac{11.3 \times 10^{-3}}{9.8 \times 10^{-3}}=\frac{k}{k} \cdot\left(\frac{1}{1.75}\right)^{\prime}\left(\frac{1.4}{1.4}\right)^{\prime}\left(\frac{2}{1}\right)^{c}$
$11.3 \times 10^{-3}=h(1)^{1}(1.4)^{\prime}(2)^{\prime}$
$k=4.04 \times 10^{-3} \mathrm{M}^{-2} \mathrm{~s}^{-1}$

$$
\text { rate }=4.04 \times 10^{-3} \mathrm{~m}^{-2} \mathrm{~s}^{-1}\left(\mathrm{CH}_{3}(0 \mathrm{CH}][\mathrm{Br})\left[\mathrm{H}^{+}\right]\right.
$$

5. rate $=4.04 \times 10^{-3} \mathrm{M}^{-2} \mathrm{~s}^{-1}(0.25)^{3}=6.313 \times 10^{-5} \mathrm{M} \mathrm{s}^{-1}$
6.

- Plot ot $\frac{1}{C A J}$ is linear $\left(r^{2}=1\right) \quad$ slope $=0.7094$
$2^{\text {nd }}$ order $k=0.7094 \mathrm{M}^{-1} \mathrm{~S}^{-1} \quad$ rate $=0.7094 \pi^{-1} \mathrm{~s}^{-1}\left[\mathrm{NO}_{2}\right]^{2}$

$$
\frac{1}{(A)}=k t+\frac{1}{(A)_{0}}
$$

$$
\frac{1}{C A D}=0.7094 M^{-1} S^{-1}(25 S)+\frac{1}{0.0831 M}
$$

$$
[A]=0.0336 \mathrm{M}
$$

7. The amount of every that reactants must overcome for padus to form. High Ea meas a slow reaction. If a catalyst is added to R reaction, then will become smaller.
8. (1) change te concentantion of reactants
(2) add a catalyst
(3) change the temperature
