This exam is schedule for 75 minutes and I anticipate it to take the full time allotted. You are free to leave if you finish. In multiple part problems, points awarded will not be penalized for incorrect answer on previous parts, so simply **move on if you get stuck on one part**. If you need to, make up an answer for the previous part. Always neatly show work for partial credit. You are welcome to "buy" hints to any question – it will cost you points, but this is often a better alternative than having the wrong problem solving strategy.

1. How many oxygen atoms are found in 27.3 grams of sodium phosphate?

2. Determine [NO₃⁻] when 46.8 g of iron (II) nitrate is dissolved in 2.95 L of water.

3. What is the mass of nitrogen found in 244.5 mL of NO₂ gas at 3.64 atm and 145 $^\circ$ C

4. Determine the empirical formula of a compound that is 3.26% hydrogen, 19.36% carbon, and 77.38% oxygen by mass.

5. What does reaction order mean and why is it important in the study of reaction rates?

6. What are three ways that the rate of a chemical reaction can be changed? Clearly explain the reason that each can influence the rate. You are welcome to use equations and concepts in your answer.

- 7. Consider a flask that contains O₂ gas at a pressure of 2 atm. In your own words, explain how (i.e. up or down) and why pressure changes as each of the following are changed:
 - a. Temperature is increased
 - b. Volume is decreased
 - c. O₂ gas is removed from the flask
 - d. N_2 gas is added to the flask. No chemical reaction occurs.
- 8. Clearly explain why potassium nitrate will dissolve in water. Your answer should include foundational chemical concepts, not just reciting solubility rules.

9. 480 mL of water is added to a 386 mM solution of Na₂SO₄. If the [Na⁺] after dilution is 300 mM, what was the original volume of the sodium sulfate solution?

- 10. Barium sulfate can be made when magnesium sulfate is mixed together with barium chloride.
 - a. Write a balanced reaction.
 - b. What type of reaction is described here?
 - c. Write a net ionic equation for this reaction.

d. If 5.000 grams of each reactant are combined, determine the mass of barium sulfate that will be made if the reaction proceeds with a **90% yield**.

11. For each pair, identify which compound will be more soluble in water. **Clearly justify your answer.**

 $H_2O \text{ or } H_2S$

NCI₃ or PCI₃

(NH₄)₂CO₃ or CaCO₃

12. Given the following data,

a. Determine the rate law – make sure to include values for the order with respect to each reactant and the value of the rate constant with the correct units.

Experiment	[O ₂] (mM)	[H ₂] (mM)	Rate (mM min ⁻¹)
1	0.468	0.147	0.007551
2	0.468	0.884	0.045306
3	1.404	0.884	1.223274

b. Determine the rate of the reaction when the concentration of all reactants is 0.35 M.

13. Consider the following reaction:

4 HNO₃ (aq) + Cu (s) →Cu(NO₃)₂ (aq) + 2 NO₂ (g) + 2 H₂O (l)

88.6 mL of 3.18 M HNO₃ is added to a flask containing 2604 mg of solid copper. If the reaction occurs in a 4.00 L flask held at 100 °C, determine each of the following (make sure to include units!): No credit will be awarded without your work clearly shown.

a.	The total pressure once the reaction is complete.	
b.	The concentration of Cu(NO ₃) ₂ that is produced.	
c.	The mass of Cu (s) remaining.	
d.	The concentration of HNO ₃ remaining.	

						_																										_
						0.7	(223)	Ţ	Francium 87	0.7	132.91	Cs	Cesium	0.8	85.47	Rb	Rubidium 37	0.8	39.10	⋝	Potassium 19	0.9	22.99	Na	Sodium	1.0	6.94		Lithium	1.01 2.1		-
	ac	**00		*lanth	:	0.9	(226)	Ra	Radium 88	0.9	137.33	Ba	Barium	1.0	87.62	Sr	Strontium 38	1.0	40.08	Ca	Calcium 20	1.2	24.31	Ma	Magnesium 12	1.5	9.01	₽ ₽	Beryllium	N		
	แแนธง	finidae		anides	:			*	89-102			*	E7 70									_										
<u>-1</u> -1	Ac (227)	Actinium 89	1.1	La 138.91	Lanthanum 57	I	(262)	5	Lawrencium 103	1.1	174.97	2:	Lutetium 71	1.2	88.91	~	Yttrium 39	1.3	44.96	Sc	Scandium 21							All avera	decimal	are roun	Average	
1.3	Th 232.04	Thorium 90	1.1	Ce 140.12	Cerium	1	(261)	Ŗ	Rutherfordium 104	1.3	178.49	Ĩ;	Hafnium 72	1.4	91.22	Ľ	Zirconium 40	1.5	47.88	∃	Titanium 22	4				figure r	and sul	ige masse	places.	ded to two	rolativo a	
1.5	Pa 231.04	Protactinium 91	1.1	Pr 140.91	Praseodymium 59	1	(262)	₽	Dubnium	1.5	180.95	Ta	Tantalum 73	1.6	92.91	Np	Niobium 41	1.6	50.94	<	Vanadium 23	σ				ules.	bject to	s are to		D		
1.4	U 238.03	Uranium 92	1.1	Nd 144.24	Neodymium 60	1	(266)	Sg	Seaborgium 106	1.7	183.84	€:	Tungsten 74	1.8	95.94	Mo	Molybdenum 42	1.6	52.00	ç	Chromium 24	6			Elec							
1.4	(237)	Neptunium 93	. 1.1	Pm (145)	Promethium 61	1	(264)	Bh	Bohrium 107	1.9	186.21	Re	Rhenium	1.9	(98)	Т,	Technetium 43	1.5	54.94	Mn	Manganese 25	7			tronega			Syn	2		Eleme Nar	erioc
1.3	Pu (244)	Plutonium 94	1.2	Sm	Samarium 62	1	(269)	Hs	Hassium 108	2.2	190.23	So So	Osmium 76	2.2	101.07	Ru	Ruthenium	1.8	55.85	Fe	Iron 26	0			tivity 🕂				5			tic Ta
1.3	Am (243)	Americium 95	1.1	Eu 151.97	Europium 63	I	(268)	Mŧ	Meitnerium 109	2.2	192.22	- :	Iridium 77	2.2	102.91	Rh	Rhodium 45	1.8	58.93	ဂိ	Cobalt	9				N00.	nuc	¥ ۲		8	Merc	able
-	(247)	96	1.5	Gd 157.25	Gadolinium 64		(271)	Ds	Darmstadtiun 110	2.2	195.08	P 2	Platinum 78	۲.7	106 10	Pd	Palladium 46	1.8	58.69	<u>Z</u> .	Nickel	10			- 1.9		ло				ury	of the
1.0	(247)	Berkelium 97	1.	Тb 158.93	Terbium 65		(272)	Rg	1 Roegentiun 111	2.4	196.97	A :	Gold	1.9	107.87	Ag	Silver 47	1.9	63.55	ĉ	Copper 29	=				Mass	Avera			Numbe) Elei
1.2	(251)	Californium 98	1.	Dy 162.50	Dysprosiur 66	1	(277)	Su	1 Coperniciur 112	1.9	200.59	H	Mercury 80	1.7	112.41	Сd	Cadmium 48	1.6	65.39	Zn	Zinc	12					ge			÷		<u>nent</u>
1.0	Es (252)	Einsteinium	1.2	Ho 164.93	n Holmium 67		(284)	Uut	n Ununtrium	9 1.8	204.38	= :	Thallium 81	1.7	114.82	F	Indium	1.6	69.72	Ga	Gallium	1.5	26.98	≥∶	Aluminum	2.0	10.81	π σ	Boron	13		ŝ
<u></u>	(257)	Fermium	1.2	167.26	Erbium 68		(289)	Ľ	Flerovium 114	1.8	207.20	Pb	Lead	1.8	118.71	Sn	5 ∄	1.8	72.61	Ge	Germanium 32	1.8	28.09	<u>s</u> :	Silicon	2.5	12.01	n •	Carbon	14		
<u></u>	(258)	Mendeleviu	1.	Tm 168.93	Thulium 69		(288)	Uup	Ununpentiu 115	1.0	208.98	<u>D</u> , 8	Bismuth	1.	121.76	SP	Antimony 51	2	74.92	As	Arsenic 33	2	30.97	ס:	Phosphoru 15	ω	14.01	z ~	Nitrogen	15		
<u>3</u>	No (259)	n Nobelium	3	173.04	Ytterbium 70	1	(293)	Ł	m Livermoriu 116	9 2.0	(209)	Po	Polonium	2.2	127.60	Ŀ	Tellurium 52	2.2	78.96	Se	Selenium 34	1 2.	32.07	s s	IS Sulfur	3.1	16.00) ∝	Oxygen	16		
ω			<u> </u>	12		1	(294)	Uus	m Ununseptii 117	2.	(210)	₽	Astatine 85	1 2.	126.90	_	Iodine	4 2	79.90	쀽	Bromine 35	.3	35.45	<u>Ω</u> :	Chlorine	5 4.	19.00	Πœ	Fluorine	17		
							(294)	Uuo	JIM Ununoctiur 118	2 2.4	(222)	R	Radon 86	5 2.0	131.29	Xe	Xenon 54	8 3.0	83.80	Ţ	Krypton 36	0	39.95	Ą	Argon	0	20.18		Neon	4.00	He 1	18
						11			3	4				0				10				11				11			- 1	1		1

Equations and constants:

$$E = hv \qquad c = 2.998 \ x \ 10^8 \ m/_S \qquad c = \lambda v \qquad h = 6.626 \ x \ 10^{-34} J$$

$$E_n = \frac{-2.18 \times 10^{-18} J}{n^2} \qquad KE = \frac{1}{2} mv^2 \qquad E_{coulomb} = 231 pm \cdot a J \frac{q_1 q_2}{r}$$

$$m_{electron} = 9.109 \times 10^{31} kg \qquad \lambda = \frac{h}{mv} \qquad V_{cylinder} = \pi r^2 h$$

$$N_A = 6.022 \times 10^{23} mol^{-1} \qquad PV = nRT \qquad R = 0.08206 \ \frac{L \cdot atm}{mol \cdot K}$$

$$P = \frac{F}{area} \qquad F = ma$$

$$1atm = 760 \ mmHg = 760 \ torr \qquad 1atm = 1.01325 \ bar \qquad 1atm = 101325 \ Pa$$

$$k = Ae^{\frac{-E_a}{RT}}$$

Soluble Compounds									
Compounds	Notable Exceptions:								
Group 1A ions	None								
Ammonium	None								
Acetate	None								
Nitrate	None								
Halides	Ag^+, Pb^{2+}, Hg_2^{2+}								
Sulfate	Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Pb ²⁺								

Insoluble Compounds								
Compounds Containing	Notable Exceptions							
Carbonate	Group IA and NH_4^+							
Phosphate	Group IA and NH_4^+							
Sulfide	Group IA, IIA, and NH_4^+							
Hydroxide	Group IA, NH_4^+ , Ca^{2+} , Sr^{2+} ,							
	Ba ²⁺							