This exam is schedule for 75 minutes and I anticipate it to take the full time allotted. You are free to leave if you finish. In multiple part problems, points awarded will not be penalized for incorrect answer on previous parts, so simply **move on if you get stuck on one part**. If you need to, make up an answer for the previous part. Always neatly show work for partial credit.

When you draw Lewis structures ALWAYS include lone pairs and redraw them to show the correct molecular geometry! A 'connect the dots' structure is not complete and will not receive full credit. Show all formal charge.

- 1. **Incomplete** Lewis structure for three molecules are shown below. All charges are clearly labeled on the correct atom. Complete each of the following:
 - a. Add lone pairs to complete the structures.
 - b. If resonance forms exist, draw at least one.
 - c. Determine the hybridization of **all** atoms.
 - d. Determine all bond angles (if all bond angles are the same, you only need to label one).
 - e. Redraw each molecule so that the molecular geometry is clear.

2. Each of the molecules below has only one central atom. Draw the Lewis structure for each molecule. Make sure to follow the guidelines on the first page. Label all formal charge.

On each molecule:

- a. Determine the **molecular** geometry around the **central** atom.
- b. For neutral molecules, indicate whether they are polar or nonpolar (circle the correct answer).
- c. Indicate how many resonance forms exist.

CF₂Br₂ (polar or nonpolar)

Number of resonance forms _____

NO₃⁻¹ Number of resonance forms _____

Mol. Geometry _____

Mol. Geometry _____

SO₃²⁻ Number of resonance forms

SO₃ (polar or nonpolar) Number of resonance forms

Mol. Geometry _____

Mol. Geometry _____

(polar or nonpolar) SO₂ Number of resonance forms _____

Mol. Geometry _____

SO₂²⁻ Number of resonance forms _____

Mol. Geometry _____

- 3. True or false:
 - a. All atoms with sp³ hybridization have tetrahedral **electron** geometry.

		True	False				
	b.	All atoms with sp ³ hybridization have tetrahedral molecular geometry.					
		True	False				
	C.	Some sp ³ d ² hybridized atoms can have linear molecular geometry.					
		True	False				
	d.	An atom can have s ² p ² hybridiz	ation.				
		True	False				
	e.	A nitrogen atom can have sp ³ d	hybridization.				
		True	False				
4.	4. Clearly explain why some atoms are able to break the octet rule.						

5. Name each of the following compounds:

FeCl ₃	Mg(BrO ₄) ₂	HF
	U ()	

6. Determine the correct molecular formula for each of the following compounds:

Ammonium nitride cop	oper (I) nitrite	disulfur heptachloride
----------------------	------------------	------------------------

7. Is Pd⁻² (Z=46) a common ion? Clearly justify your answer.

8. Tales from the past: Order the following by increasing radius (smallest \rightarrow largest):

O²⁻, Ne, Mg²⁺, Cl⁻

9. What are two stable indium ions (Z = 49)? Using electron configurations, justify why they are stable.

10. Consider the following molecules. Rank them by order of increasing boiling temperatures. Justify your answer for credit – no points will be given without an explanation.

NH₃ NCl₃ PCl₃ PH₃

11. What is the difference between a sigma bond and a pi bond?

- 12. Answer **one** problem from this page:
 - a. Using hybridization theory, sketch an energy diagram for the bonds between **carbon and nitrogen** in CH₂NH. In your diagram, identify what each electron is doing you may reference the Lewis structure shown below.

 b. Using molecular orbital theory, determine which of these molecules would be attracted to a magnet. To receive any credit, you must show how you arrived at your answer. CN⁻¹
 NO⁻¹
 CO⁻¹

MO order: $\sigma_{2s}, \sigma_{2s}^{*}, \sigma_{2p}, \pi_{2p}, \pi_{2p}^{*}, \sigma_{2p}^{*}$

- 13. Answer **ONE** of the following. You must fully explain your answer to receive credit. Answer more for bonus credit.
 - a. Consider N₂, O₂, and CO. N-N and O-O bonds are both non-polar; C-O bonds are polar. Based on this, we would predict that CO would have a significantly higher boiling temperature than the other two; however, the trend is N₂ < CO < O₂. Explain this trend (Hint, it has nothing to do with molecule size).
 - b. PCl₃F₂ can be polar or nonpolar depending on the arrangement of atoms. Draw this molecule in two ways that clearly explains the previous statement. Make sure to show bond polarity to support your answer.
 - c. Which of these molecules has the longest S-O bond? $SO_3 = SO_3^{2-2} = SO_2^{-2} = SO_2^{-2}$
 - d. Use MO theory to predict the number of sigma and pi bonds in C₂. Based on your finding, do you think that this molecule can form? $\sigma_{2s}, \sigma_{2s}^*, \pi_{2p}, \sigma_{2p}, \pi_{2p}^*, \sigma_{2p}^*$
 - e. Draw the Lewis structure of the molecule described:

This monovalent anion consists of a neutral central atom from the 5th shell with seesaw geometry. It has covalent bonds to one type of atom from the 3rd shell and one type of atom from the 4th shell. None of the atoms carry a permanent formal charge of -1. One pi bond exists in this molecule and two resonance forms can be drawn.

	Francium 87 Fr (223) 0.7	Cesium 55 CS 132.91 0.7	Rubidium 37 85.47 0.8	Potassium 19 39.10 0.8	Sodium 11 22.99 0.9	Lithium 6.94 1.0	Hydrogen 1 1.01 2.1	-
*lanth **ac	Radium 88 (226) 0.9	Barium 56 137.33 0.9	Strontium 38 87.62 1.0	Calcium 20 40.08 1.0	Magnesium 12 24.31 1.2	Beryllium 4 9.01 1.5	N	
anides	89-102	57-70 *						
Lanthanum 57 La 138.91 1.1 Actinium 88 Ac (227) 1.1	Lawrencium 103 Lr (262)	Lutetium 71 174.97 1.1	Yttrium 39 88.91 1.2	Scandium 21 Sc 44.96 1.3	ω			
Cerium 58 6 140.12 1.1 Thorium 7 8 232.04 1.3	Rutherfordium 104 Rf (261) 	Hafnium 72 Hf 178.49 1.3	Zirconium 40 91.22 1.4	Titanium 22 Ti 47.88 1.5	4			
Praseodymiu 59 Pr 140.91 1. 140.91 1. Protactinium 91 231.04	105 Db (262)	Tantalum 73 180.95 1.5	Niobium 41 92.91 1.6	Vanadium 23 50.94 1.6	л			
^m Neodymiur 60 Nd 144.24 144.24 1.1: 92 92 92 92 92 1.:	Seaborgiun 106 Sg (266)	Tungsten 74 183.84	Molybdenur 42 95.94 95.94	Chromium 24 52.00 51.00	б Ше			
n Promethiun 61 Pm (145) 1 1 Neptunium 93 93 93 1.4	n Bohrium 107 Bh (264)	Rhenium 75 186.21 1.2	m Technetiur 43 Tc (98) 1.9	Manganes 25 Mn 54.94 1.5	ctronega 7	Syr	Elem Na	Perio
ⁿ Samarium 62 Sm 150.36 1. 1. 1. 1. 1. 94 Plutonium 94 (244) 1. 244	Hassium 108 HS (269)	Osmium 76 190.23	n Rutheniun 44 101.07	e Iron 26 55.85 1.8	ativity +	nbol	me	dic T
Europium 63 151.97 1.1 Americium 95 95 95 95 95 95 95 95 95 95 95 95 95	Meitnerium 109 Mt (268)	192.22	102.91 Rh	Cobalt 27 58.93 1.8	ω	200 ▼	Mercent 8	able
Gadoliniur 64 157.25 1 1 Curium 96 96 96 96 96 96 96 96	110 110 Ds (271)	Platinum 78 195.08 2.	Palladiun 46 106.4 0	Nickel 58.69	1 .9	.59 ≮		of th
n Terbium 65 Tb 158.93 158.93 97 97 97 97 97 97 97 97 97 97 97 97 97		Figure 196.97	47 47 407.8 107.8	Copper 29 63.55 1	=	Avera Mass	Atomii Numb	e Ele
Dysprosi 66 7 7 8 7 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9		Mercury 80 4 200.5 1	Cadmiu 48 9 112.4 1	Zinc 9 65.39	12	age	e o	men
um Holmiun 67 HO 164.9 9 9 Es (252) 1	um Ununtriu 113 (284)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	m Indium 49 1 114.8:	Galliun 31 69.72	Aluminu 13 26.98	Boron 10.81	13	l.S
1 Erbium 68 Er 3 167.2 1 100 Fermium 100 Frmiun (257)	m Fleroviu 114 Fl (289)	82 82 82 8 8 8 207.2	50 50 2 118.7 1	Germaniu 32 72.61	^m Silicon 14 28.09 1	Carbor 6 12.01	14	
Thuliun 69 7 m 168 6 168 9 7 m 101 101 101 101 101 101 101 101 101 10	115 Ununpen (288	.8 208.9	Antimo 51 1 121.7	Arseni 33 74.92	.8 Phosph	Nitroge 7 14.0	15	
n Ytterbi 70 1.3 173.1 1.3 173.1 1.3 1.3 1.3	tium Livermo 116 	1.9 (205	Tellur 52 Te 1.9	ic Seleni 34 Se 20 78.9 2.0	orus Sulfa 16 7 32.0 2.1	en Oxyg 8 8 3.0 3.0	16	
		Asta 8: 2.0 2.0	ium lodii 50 1 26. 2.1	Brom 35 6 79.9 2.4	17 Chio 17 2.5 2.5	en Fluo 9 0 19.0 3.5	17	
	Ptium Unun 7 1 15 U 4) (2%	t R 2 .2 (22	3 90 2.5 3 3 4 8 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2.8 83	7 Ar 15 39 3.0 39	4.0 20 №	4. -	-
	18 18 18	2) 2.4	.29 2.6	.80 3.0	95 * 8	18 0 0		œ