
Name			
Name			
This e		es and I anticipate it to take the full time allotted. You are free to lea	ve if
	tiple part problems, points aw move on if you get stuck o	arded will not be penalized for incorrect answer on previous parts, s n one part.	D
Alway	s neatly show work for part	ial credit.	
Completely stuck on a problem, you can "buy" hints for points.			

 Identify the SI Units for each of the following: 	
Area of a circle →	Density $\rightarrow \frac{kg}{m}$
Frequency > 51 6 + HZ	Temperature →
2. As atoms increase in size, A increases more quickly than many # = proton + nextrap	Z. Explain why.
3. Consider the ionization energies observed to the right. How can you justify the changes seen in A,	

C. follows expected trend - increasing 2 means increasing 9,

4. What is meant by particle-wave duality and why is it important? Be specific.

particles in motion have the properties of a wave when they interest will a surface, they have the properties of a particle

5. Calculate the frequency of a photon with energy of 1.826 x $10^{\text{-}12}~\mu\text{J}.$

 $V = \frac{E}{h} = \frac{1526 \times 10^{-17} \text{ J}}{6.620 \times 10^{-17} \text{ J}} = \frac{276 \times 10^{-17} \text{ J}}{6.620 \times 10^{-17} \text{ J}} = \frac{276 \times 10^{-17} \text{ J}}{6.620 \times 10^{-17} \text{ J}}$

- 6. How many neutrons are present in the nucleus of the ¹¹³In? Note: this element has an atomic number of 49.
- 7. For each element, select the most correct group from this list: halogen, transition metal, metalloid, alkali metal, noble gas, alkali earth metal

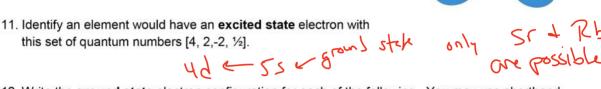
Sodium (Z = 11) alkali metal

Arsenic (Z = 33) Metalloid

Bromine (Z = 35)

Copper (Z = 29) trasita metal

8. What is meant by "quantization of energy"? Be specific.


electron on confined to specific oragies who intoreting will

9. Determine the **energy and wavelength** of the photon needed to move an electron from the ground state of a hydrogen atom to the 6th energy level. Report your answer in SI units.

 $E_{1} = -217 \times 10^{-17}$ $E_{2} = -217 \times 10^{-17} = -6.06 \times 10^{-20} \text{ J}$ $C_{2} = -6.06 \times 10^{-20} \text{ J}$ $C_{3} = -6.06 \times 10^{-20} \text{ J}$ $C_{4} = -6.06 \times 10^{-20} \text{ J}$ $C_{5} = -6.06 \times 10^{-20} \text{ J}$ $C_{7} = -6.06 \times 10^{-20} \text{ J}$

- 10. Consider an electron found in the 4th shell in an orbital shaped like the one you see to the right.
 - a. What type of orbital is this electron in? 4 d
 - Determine two sets of quantum numbers that could describe this electron.

12. Write the **ground state** electron configuration for each of the following. You may use shorthand notation for. **Circle the valence electrons on each atom.**

a. Silicon (Ne) (3) (SP)
b. Silver (Z=47) (Kr) (S1)4 10

c. Bismuth (Z=83) [Xe) 44145216 [73]

Don't forget to circle the valence electrons!

13. Is silicon paramagnetic or diamagnetic? Clearly explain how you arrived at your answer.

37/77 - poamagnatic

- 14. The emission spectrum of a magnesium atom includes a photon at 102.6 nm. This emission is the result of relaxation of an electron from the 1st excited state to the ground state.
 - d. Identify the initial and final orbitals for this transition.

112212 ph (52) him 39 -> 35

e. What is the difference in energy between the two orbitals you identified above?

E= h< - 1.92χ10-11 J= ΔΕ

Answer one question from this page

- 15. When a photon with a wavelength of 202.2 nm strikes a potassium atom, an electron is ejected travelling at 1469 Mm/s. What is the threshold energy of potassium?
- 16. Indium has two stable isotopes. Using the information in the table, determine the abundance of the ¹¹³In isotope:

15.	1469 Mm/s 106 m = 1.469 K109 m/s			
	Ex= 1 (4 109 x10-31 kg) (1.469 x109 M/s) =			
	EK = 9.828 KIO 13 J			

Isotope	Exact Mass	
	(amu)	
Indium-113	112.904	
Indium-115	114.904	

$$\lambda = 202.2 \text{ nm} | 10^{-9} \text{ M} = 2.022 \times 10^{-7} \text{ m}$$
 Ephon = $\frac{1}{4} = 9.824 \times 10^{-17} \text{ J}$

$$\phi = \frac{10^{-9} \text{ M}}{10^{-9} \text{ m}} = 2.022 \times 10^{-7} \text{ m}$$

$$\phi = \frac{10^{-9} \text{ M}}{10^{-9} \text{ m}} = \frac{10^{-9} \text{ M}}{10^{-12} \text{ J}}$$

16.
$$X+4=1$$
 $X=1-1$
 $112.904X + 114.904Y = 114.92$
 $112.904(1-7) + 114.904Y = 114.92$
 $112.904 - 112.904Y + 114.904Y = 114.92$
 $1.916 = 24$
 $1 = 0.958 = 95.8\%$
 $2 = 1 - 2 = 0.042 = 4.2\%$

17. The first 8 ionization energies of element "X" are shown below (in aJ – note 1 aJ = 10^{-18} J).

Explain why the ionization energies are getting larger.

How many valence electrons does X have? Briefly justify your answer.

What group does X belong to?

18. The density of ⁷⁵As is 5.727 g mL⁻¹. Assuming atoms are prefect spheres, calculate the radius and report it in SI units.

$$\frac{33 \text{ poton}}{1 \text{ poto}} = 5.524 \times 10^{-21} \text{ kg}$$

$$\frac{41 \text{ newtron}}{1 \text{ poto}} = 1.677 \times 10^{-21} \text{ kg}$$

$$\frac{33 \text{ e}^{-1} 9.107 \times 10^{-21} \text{ kg}}{1 \text{ newtron}} = 3 \times 10^{-29} \text{ kg}$$

$$\frac{33 \text{ e}^{-1} 9.107 \times 10^{-21} \text{ kg}}{1 \text{ e}^{-1}} = 3 \times 10^{-29} \text{ kg}$$

$$\frac{1.265 \times 10^{-22} \text{ f}}{1 \text{ kg}} = 2.193 \times 10^{-23} \text{ f} = 1.250 \times 10^{-22} \text{ g}$$

$$\frac{1.265 \times 10^{-22} \text{ f}}{1 \text{ mL}} = 2.193 \times 10^{-23} \text{ mL} = 2.193 \times 10^{-23} \text{ mL}$$

$$\frac{1.265 \times 10^{-22} \text{ f}}{1 \text{ mL}} = \frac{1.270 \times 10^{-23} \text{ mL}}{1 \text{ mL$$