1. For each of the following, determine the sign of ΔH and state if the reaction is endothermic or exothermic. If you don't know what the word means, look it up.
$\begin{array}{lll}\text { a. Condensation } g \rightarrow l & \Delta H<\varnothing & \text { exothermic } \\ \text { b. Sublimation } \\ & g \rightarrow S & \Delta H<\varnothing\end{array}$
2. Order these compounds by increasing $\Delta \mathrm{H}_{\text {fuse }}$.

$$
\mathrm{NH}_{3}, \mathrm{NCl}_{3}, \mathrm{PCl}_{3}
$$

3. Predict which of the following will have a higher S°.
a. $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ vs. $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$g>2$
b. $\mathrm{H}_{2} \mathrm{~S}(\mathrm{I})$ vs. $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
$\mathrm{H}_{2} \mathrm{~S}$ is loge $\mathrm{h}_{2} \mathrm{H}_{2} \mathrm{O}$

H -bonds
4. Consider a system at rest. Which of the following will have a greater impact on the total internal energy of the system?
$W=-4(0.5)=-2$ i. The volume of the system changes by 0.5 L with a constant external pressure of 4 atm OR $W=-2.5(1)$: ii. The volume of the system changes by 1 L with a constant external pressure of 2.5 atm
5. Use the following data for ethyl alcohol $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right)$ to determine the enthalpy change when 360 g of ethanol is heated from $50^{\circ} \mathrm{C}$ to $92^{\circ} \mathrm{C}$.

333,793 J

$\mathrm{T}_{\mathrm{b}}\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{T}_{\mathrm{m}}\left({ }^{\circ} \mathrm{C}\right)$	$\Delta \mathrm{H}_{\text {fusion }}(\mathrm{kJ} / \mathrm{mol})$	$\Delta \mathrm{H}_{\text {vaporization }}$ $(\mathrm{kJ} / \mathrm{mol})$	$\mathrm{C}($ solid $)$ $\mathrm{J} /\left(\mathrm{mol}{ }^{\circ} \mathrm{C}\right)$	$\mathrm{C}($ liquid $)$ $\mathrm{J} /\left(\mathrm{mol}{ }^{\circ} \mathrm{C}\right)$	$\mathrm{C}(\mathrm{gas})$ $\mathrm{J} /\left(\mathrm{mol}{ }^{\circ} \mathrm{C}\right)$
78.3	-117	5.02	38.57	111.5	112.4	87.55

6. Consider the following reaction at equilibrium. For each of the following, determine if the equilibrium will shift toward products or reactants or if there will be no change.

$$
\mathrm{Zn}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{ZnO}(\mathrm{~s})+\mathrm{CO}(\mathrm{~g}) \quad \Delta H_{r x n}^{0}=-100 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad \mathrm{~K}_{\mathrm{p}}=600
$$

a. The volume is decreased in a flask that was at equilibrium. No change (gases on both sides
b. The temperature is increased in a flask that was at equilibrium. reactant on ard
c. $\mathrm{Zn}(\mathrm{s})$ is added to the reaction chamber. No change
d. Carbon dioxide is added to the chamber. prodreis
7. For each change listed in Problem 6, determine if $\Delta G_{r x n}>0, \Delta G_{r x n}<0$, or $\Delta G_{r x n}=0$.
a) $\Delta G=0$
b) $\Delta G>0$
c) $\Delta G=0$
d) $\Delta G<0$

$$
\begin{aligned}
& \Delta H_{1}=\frac{112.4 \mathrm{~J}}{\mathrm{~mol} \circ \mathrm{c}}(78.3-52)=2956.1 \frac{\mathrm{~J}}{\mathrm{Jol}} \\
& \Delta H_{2}=\frac{38.57 \mathrm{~kJ}}{\mathrm{~mol}}+\frac{10^{3} \mathrm{~J}}{1 \mathrm{~kJ}}=38.570 \frac{\mathrm{~J}}{\mathrm{~mol}} \\
& \Delta H_{3}=87.55 \frac{\mathrm{~J}}{\mathrm{~mol} \circ \mathrm{c}}(92-78.3)=1199.4 \frac{4 \mathrm{~J}}{\mathrm{~mol}} \\
& \Delta H_{\text {Total }}=2956.1 \frac{\mathrm{~J}}{\mathrm{~mol}}+38570 \frac{\mathrm{~J}}{\mathrm{~mol}}+1199.4 \frac{\mathrm{uJ}}{\mathrm{~mol}}=42725.56 \mathrm{~J} \\
& \left.\frac{360 \mathrm{~g}}{\mathrm{~mol}}\right|_{46.08 \mathrm{~g}}=7.8125 \mathrm{~mol} \times 42.725 .5 \frac{\mathrm{~mJ}}{\mathrm{~mol}}=333,793 \mathrm{~J}
\end{aligned}
$$

