\qquad

This exam is schedule for 75 minutes and I anticipate it to take the full time allotted. You are free to leave if you finish. In multiple part problems, points awarded will not be penalized for incorrect answer on previous parts, so simply move on if you get stuck on one part. If you need to, make up an answer for the previous part. Always neatly show work for partial credit.

Equations and constants:

$$
\begin{aligned}
& E=h v \\
& c=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
& c=\lambda v \\
& h=6.626 \times 10^{-34} J \\
& E_{n}=\frac{-2.18 \times 10^{-18} J}{n^{2}} \\
& K E=\frac{1}{2} m v^{2} \\
& E_{\text {coulomb }}=231 p m \cdot a J \frac{q_{1} q_{2}}{r} \\
& m_{\text {electron }}=9.109 \times 10^{31} \mathrm{~kg} \\
& \lambda=\frac{h}{m v} \\
& V_{\text {cylinder }}=\pi r^{2} h \\
& P V=n R T \\
& R=0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}} \\
& P=\frac{F}{\text { area }} \\
& F=m a \\
& 1 \mathrm{~atm}=760 \mathrm{mmHg}=760 \mathrm{torr} \quad 1 \mathrm{~atm}=1.01325 \mathrm{bar} \quad 1 \mathrm{~atm}=101325 \mathrm{~Pa}
\end{aligned}
$$

1. How many oxygen atoms are found in 14.25 grams of sodium carbonate?
2. Determine $\left[\mathrm{NO}_{3}\right]$] when 36.224 g of magnesium nitrate is dissolved in 1.86 L of water.

$$
M g\left(\mathrm{NO}_{3}\right)_{2}=148.33 \mathrm{~g} / \mathrm{mol}
$$

$$
\begin{array}{l|l}
36.244 \mathrm{~g} \mathrm{Mg}\left(\mathrm{NO}_{\mathrm{S}}\right)_{2} & \mathrm{~mol} \frac{2 \mathrm{md}}{148.33 \mathrm{~g}} 1 \mathrm{~mol} \mathrm{Mg}_{\mathrm{g}\left(\mathrm{NO}_{3}\right)^{2}}
\end{array}=\frac{0.487 \mathrm{md} \mathrm{NO}^{-}}{1.86 \mathrm{~L}}=0.262 \mathrm{M}
$$

3. What is the mass of oxygen found in 244.5 mL of dinitrogen $\sigma^{\text {mon }}$ gas at 3.64 atm and $145^{\circ} \mathrm{C}$

$$
0.0254 \mathrm{md} \mathrm{0} 16 \mathrm{~g}=0.4144 \mathrm{~g}
$$

4. Determine the empirical formula of a compound that is 3.26% hydrogen, 19.36% carbon, and 77.38\% oxygen.

$$
\begin{aligned}
& \left.3.26 \mathrm{gH}\right|_{1.21 \mathrm{~g}} ^{\mathrm{mi}}=3.23 \div 1.62=2 \\
& \left.19.36 \mathrm{~g} C\right|_{12.01 \mathrm{~g}}=1.62 \div 1.62=1 \\
& 77.38 \mathrm{~g} \text { of }\left.\right|_{16 \mathrm{~g}}=4.84 \div 1.62=3
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Na}_{2} \mathrm{CO}_{3} \\
& 105.99 \mathrm{~g}
\end{aligned}
$$

5. Barium sulfate can be made when aluminum sulfate is mixed together with barium nitrate.
a. Write a balanced reaction.
$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}\left(\mathrm{a}_{2}\right)+3 \mathrm{BC}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{ag}) \rightarrow 2 \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq})+3 \mathrm{BCSO}_{4}(\mathrm{~s})$
b. What type of reaction is described here?
double displacenat
c. Write a net ionic equation for this reaction.

$$
\mathrm{Ba}^{2+}+\mathrm{SO}_{4}^{2-} \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})
$$

d. If 5.000 grams of each reactant are combined, determine the mass of barium sulfate that will be made if the reaction proceeds with a 90% yield.

$$
\begin{aligned}
& \mathrm{Al}_{2}\left(\mathrm{SOH}_{3}\right)_{3} \rightarrow 342.17 \mathrm{~g} / \mathrm{ml} \\
& \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow 261.35 \mathrm{~g} / \mathrm{ml} \\
& \mathrm{~B}_{\mathrm{C}} \mathrm{SO}_{4} \rightarrow 233.4 \mathrm{~g} / \mathrm{ml} \\
& \left.\left.5 \mathrm{~g} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}\right|_{342.17 \mathrm{~g}}\right|_{1 \mathrm{~mol}} ^{3 \mathrm{mal}}{ }^{\mathrm{masa}} \mid \underset{\mathrm{ml}}{233.4 \mathrm{~g}}=10.23 \mathrm{~g}
\end{aligned}
$$

6. Write a balanced reaction for the combustion of solid $\mathrm{C}_{15} \mathrm{H}_{33}$.

$$
4 \mathrm{C}_{15} \mathrm{H}_{33}(\mathrm{~s})+93 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 60 \mathrm{CO}_{2}(\mathrm{~g})+66 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

7. 172 mL of water is added to a flask containing 300 mL of 655 mM NaCl . What is the new concentration of the solute?

$$
300 \mathrm{~mL}\left|\frac{10^{-3} L}{1 \mathrm{~mL}}\right| \frac{655 \mathrm{mml}}{2}=\frac{196.5 \mathrm{mmol}}{0.3+0.72 \mathrm{~L}}=416.3 \mathrm{mM}
$$

8. A flask contains 3.2 moles of an ideal gas at $120^{\circ} \mathrm{C}$. If another 4.4 moles of the gas is added to the flask without changing the volume of pressure, determine the new temperature.
verichles $n+T$

$$
p V=n R T \quad \frac{P V}{R}=n T
$$

$$
\begin{array}{ll}
n_{1} T_{1}=n_{2} T_{2} \\
3.2(120+273.15)=(3.2+4.4) T_{2} & T_{2}=165.54 \mathrm{~K} \\
T_{2}=-107.6^{\circ} \mathrm{C}
\end{array}
$$

9. For each pair, identify which compound will be more soluble in $\mathrm{C}_{8} \mathrm{H}_{18}$. Clearly justify your answer.
a. $\mathrm{H}_{2} \mathrm{O}$ or $\mathrm{H}_{2} \mathrm{~S}$ non. poler
b. NCl_{3} or PCl_{3} \qquad
c. NaCO_{3} or SO_{3}

10. Consider the following reaction:

$$
4 \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{Cu}(\mathrm{~s}) \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{NO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

58.6 mL of $4.12 \mathrm{M} \mathrm{HNO}_{3}$ is added to a flask containing 3604 mg of solid copper. If the reaction occurs in a 4.00 L flask held at $100^{\circ} \mathrm{C}$, determine each of the following:
a. The total pressure in the after the reaction completes.
b. The concentration of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ that is produced.
c. The mass of $\mathrm{Cu}(\mathrm{s})$ remaining.
d. The concentration of HNO_{3} remaining.

\qquad mg

249 mM

$$
0.1134 \mathrm{~mol} \mathrm{NO} \left\lvert\, \frac{1 \mathrm{CO}\left(\mathrm{NO}_{3}\right)}{2 \mathrm{NO} 2}=\frac{0.0567 \mathrm{Mol}\left(\mathrm{NO}_{3}\right)_{2}}{0.0586 \mathrm{~L}}=0.968 \mathrm{M}\right.
$$

$\left.0.1134 \mathrm{md} \mathrm{NO}_{2}\right|_{2 \mathrm{NO}_{2}} ^{4 \mathrm{NNO}_{3}}=0.2268 \mathrm{ml} \mathrm{used}$

$0.0566 L$	4.12 mJ
L	$=0.2414 \mathrm{mul} Q$ stor +2

$$
\begin{aligned}
0.2414-0.226 \mathrm{CH} & =\frac{0.0146 \mathrm{~mol}}{0.0586 \mathrm{~L}} \\
(\mathrm{HNO} 3) & =0.249 \mathrm{M}
\end{aligned}
$$

11. Consider the combustion of an unknown compound $\left(\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}} \mathrm{N}_{z}\right)$. Exactly 30 grams of this compound is combusted in a 1.5 L flask at a constant temperature of 300 K . After the combustion reaction completes, 8.327 atm of $\mathrm{CO}_{2}, 12.490 \mathrm{~atm}$ of $\mathrm{H}_{2} \mathrm{O}$, and 2.776 atm of NO_{2} is produced.
a. What is the empirical formula of this compound?
CO_{2}
$\mathrm{H}_{2} \mathrm{O}$

$$
N=\frac{(12.490)(1.5)}{(0.08206)(300)}=0.761 \text { mo }\left.\mathrm{He}_{2}\right|^{2} \mathrm{H}=1 \mathrm{H}=1.522 \mathrm{~mol} \mathrm{H} \div 0.169=9
$$

$$
\text { Non } n=\frac{(2.776)(1.5)}{(0.08206)(300)}=0.169 \mathrm{~mol} \mathrm{NO}_{2} \frac{1 \mathrm{~N}}{1 \mathrm{NO2}}=0.169 \mathrm{md} \mathrm{~N} \div .169=1
$$

$$
\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{~N}
$$

b. Analysis shows that the molecular weight of this compound is $532.5 \mathrm{~g} \mathrm{~mol}^{-1}$. What is the molecular formula?

$$
\begin{aligned}
& \mathrm{C}_{3} \mathrm{HaN}_{4}=59.13 \mathrm{glm-1} \quad \frac{532.5}{59.13}=9 \\
& \mathrm{C}_{27} \mathrm{H}_{81} \mathrm{Na}
\end{aligned}
$$

Soluble Compounds	
Compounds	Notable Exceptions:
Group 1A ions	None
Ammonium	None
Acetate	None
Nitrate	None
Halides	$\mathrm{Ag}^{+}, \mathrm{Pb}^{2+}, \mathrm{Hg}_{2}^{2+}$
Sulfate	$\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Pb}^{2+}$

Insoluble Compounds	
Compounds Containing	Notable Exceptions
Carbonate	Group IA and NH_{4}^{+}
Phosphate	Group IA and NH_{4}^{+}
Sulfide	Group IA, IIA, and NH_{4}
Hydroxide	Group IA, $\mathrm{NH}_{4}^{+}, \mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}$,

