Chem 105 Exam 1

Name	 	
Name	 	
Name	 	

Name _____

This exam is schedule for 75 minutes and I anticipate it to take the full time allotted. You are free to leave if you finish.

In multiple part problems, points awarded will not be penalized for incorrect answer on previous parts, so simply **move on if you get stuck on one part**.

Always neatly show work for partial credit.

Completely stuck on a problem, you can "buy" hints for points.

1. Identify the SI Units for each of the following:

Distance
$$\rightarrow$$
 M Area \rightarrow M Density \rightarrow Kg/m
Energy \rightarrow J = Kg/m
2. Convert the 100 µg/nm³ to kg/µm³.
 $100 Mg/10^{-6}g/1Kg/(nm/10m/10m/10^{-6}m/10^{-6}m/10m/1mm} = 100 Kg/µm^{3}$.
 $100 Mg/10^{-6}g/1Kg/(nm/10m/10m/10m/10m/1mm} = 100 Kg/µm^{3}$.

n=5

n=4

n=3

n=2

n=1

Energy

- 3. The energy diagram of a single electron atom is shown to the right, please determine:
 - a. Which transition would require the highest energy photon?

n=1-7n=5

- b. Circle the energy level of an electron in the ground state.
- c. The transition that would produce the longest wavelength photon. $1 = \sqrt{1 + 1}$
- d. For an electron in the first excited state, draw the transition that would correspond to the ionization energy. You may add anything to the image that you feel is relevant.
- e. Calculate the energy of n = 4 for a hydrogen atom.

$$E_{y} = -\frac{2.18 \times 10^{-14} \text{ J}}{4^{2}} = -1.363 \times 10^{-19} \text{ J}$$

4. List two possible sets of quantum numbers for an electron in a 5p orbital.

$$S_{11}, 0_{1}/2$$
 $S_{11}, -1_{1}/2$ $S_{11}, 1_{1}/2$
 $S_{11}, 0_{1}-1/2$ $S_{11}, -1_{1}-1/2$ $S_{11}, -1/2$

5. What is meant by particle-wave duality? Be specific.

When in motion, a particle has the properties of a wave; hover, when interacting with matter, the particle intracts as a particle. This is central to industruding how electrons interact with the nuders of an abon

 Below are listed the first ionization energy for several atoms in the 3rd shell. Justify the difference seen between the following elements. If the relationship deviates from the expected trend, clearly explain why.

	Na vs. Mg		Mg vs. Al	P vs. S	CI vs. Ar
Atom	Ionization Energy (aJ)	Mg7Na Lle	12		
Na	0.823314513			o .0 1	
Mg	1.225008303	Mg7A1	this devicts	from the expecte	A trud, It ich be
AI	0.958983726	xplai	ned by con.	sidenny stub	Le et carfig (352)
Si	1.306044503		he of allo	shielding NL	N NI et marcines
Р	1.6801727	w5	by the pitch	sitering thet	fa Hi & Mportous
S	1.65991365				1
Cl	2.077715045	Pric C A:	Juinte Con	1. except	trend. This can be
Ar	2.525074726	1 23. 3. 76	s aculars for		
		Cl vs Ar	Crafe 37 ³ Expected Las	Phas a shall Once jonize od on NZ	, le e - (ontig (3p ²) and L

Which of these elements is most likely to form an ion with a charge of +1? Justify your answer based on the energies listed above **and** electron configurations.

- Ne. It has the lowert Ionization and it forms the most stable econfig (full shell) upon ionization
- Determine the energy and wavelength of the photon ejected from a hydrogen atom when an electron relaxes from the 7th energy level to the ground state. Report your answer in SI units.

Credit also give For 02 bottome Mg or Non

- 9. Two energy level diagrams are shown. One of these corresponds to Carbon (C⁰) and the other the +5 carbon ion (C⁺⁵).
 - a. Label each graph with C^{5+} and the other with C^0 .
 - b. Clearly explain why the difference in these diagrams is observed.

- 10. Consider the nucleus of an atom. As atoms increase in size, the number of neutrons increases more quickly than the number of protons. Explain why this is necessary.
 - Neutrons serve as a charge befor. The new proton that are present, the more reations that are needed to separate the charge

11. Complete the table.

Element	Symbol	Α	Z	Number of Neutrons	Number of Electrons	Charge
Selenium-79	71 -2 Sa	79	34	79-34 35	36	-2

12. There are only two stable chlorine isotopes. Chlorine-35, which has an exact mass of 34.96885 amu, composes 75.78% of a sample. Determine the exact mass of the other stable isotope (chlorine-37). Report you answer with 5 sig figs.

```
100% = 75.78 + X X= 24.22%
35.45= 0.7578 (34.9685) + 0.24224
  0.24227 = 8.9506
       7 = 36,955 mu
```

13. When a photon with an energy of 6.954 x 10⁻¹⁹ J strikes the surface of potassium metal, an electron is ejected with no kinetic energy. What is the threshold energy of potassium?

$$E_{photon} = \Phi + E_{K}$$

$$b_{954} \times b_{75} = \Phi + 0$$

$$\phi = b_{954} \times b_{75} = J$$

14. Consider Pb (Z = 82).

- a. Write the condensed electron configuration. $\int \chi_{e2} \log^2 4f'' d \ln 2$
- b. Is this element diamagnetic or paramagnetic? Justify your answer. paramagnetic
 c. Predict two stable ions of Pb. Explain your choice using electron configurations.

PL+2 [Ke) 652 4f14 5d10 OK IF Show PG-4 w/ correct e-confrig P5+4 [Ke] 4 f14 5 d10 (however, as we learned on wed, PL is a matul and will NEVER have a (-) charge

15. Consider cobalt (Z = 27).

a. Show a **complete** orbital energy diagram for the ground state and first excited state. Make sure to label all orbitals and show all electrons.

- b. Use the above diagram to explain the quantization of energy. You can answer this in one sentence. Flectrons are required to exist @ specific every-1 levels
- 16. The radius of ⁴¹K is 243 pm. Using the information at the back of the exam and assuming the atom is a perfect sphere, calculate the density in SI units.

$$\frac{41}{1000} = 19 \operatorname{Protrons} \left(1.673 \times 10^{-27} \text{ kg} \right) = 3.179 \times 10^{-26} \text{ kg} \qquad 243 \operatorname{Pm} 10^{-12} \text{ m} = 2.43 \times 10^{-12} \text{ m} = 19 \text{ m} = 2.43 \times 10^{-12} \text{ m} = 19 \text{ m} = 2.43 \times 10^{-12} \text{ m} = 19 \text{ m} = 2.43 \times 10^{-12} \text{ m} = 19 \text{ m} = 2.43 \times 10^{-12} \text{ m} = 1000 \text{ m} = 2.43 \times 10^{-12} \text{ m} = 1000 \text{ m} = 2.43 \times 10^{-12} \text{ m} = 1000 \text{ m} = 2.43 \times 10^{-12} \text{ m} = 1000 \text{ m} = 2.43 \times 10^{-12} \text{ m} = 1000 \text{ m} = 2.43 \times 10^{-12} \text{ m} = 1000 \text{ m} = 2.43 \times 10^{-12} \text{ m} = 1000 \text{ m} = 2.43 \times 10^{-12} \text{ m} = 1000 \text{ m} = 2.43 \times 10^{-12} \text{ m} = 1000 \text{ m} = 2.43 \times 10^{-12} \text{ m} = 1000 \text{ m} = 2.43 \times 10^{-12} \text{ m} = 1000 \text{ m} = 2.43 \times 10^{-12} \text{ m} = 1000 \text{ m} = 2.43 \times 10^{-12} \text{ m} = 1000 \text{ m} = 2.43 \times 10^{-12} \text{ m} = 1000 \text{ m} = 2.43 \times 10^{-12} \text{ m} = 1000 \text{ m} = 2.43 \times 10^{-12} \text{ m} = 1000 \text{ m} = 2.43 \times 10^{-12} \text{ m} = 1000 \text{ m} = 2.43 \times 10^{-12} \text{ m} = 1000 \text{ m} = 2.43 \times 10^{-12} \text{ m} = 1000 \text{$$

17. Do you expect a neutral potassium atom to be more or less dense than a potassium cation? Briefly justify your answer.

one et to make a ection has a big affect on the value

Answer one of the following:

18. When a 14.86 kg chunk of lead is dropped into a cylinder of water, the height of the column of water increases by 4.17 cm. If the cylinder has a radius of 100 mm, calculate the density of lead. Report your answer in g/mL

$$\frac{100 \text{ mm} 10^{3} \text{ mm} 10^{3} \text{ mm}}{100 \text{ mm} 10^{3} \text{ mm}} = 10 \text{ cm}}{100 \text{ mm} 10^{3} \text{ mm}} = 10 \text{ cm}}$$

$$V = 11^{2} \text{ h} = 11(10 \text{ cm})^{2} (4.17 \text{ cm})$$

$$V = 1309.38 \text{ cm}^{3} = \text{ mL}$$

$$V = 1309.38 \text{ cm}^{3} = \text{ mL}$$

19. Calculate the velocity of the ejected electron when a photon (λ = 364 nm) strikes a zinc surface (Φ = 6.8878 x 10⁻¹³ µJ).

$$\frac{364nn1107n}{1nn} = 3.64 \times 10^{7} \text{ m}}{1nn}$$

Equations and constants:

$$E = hv \qquad c = \lambda v \qquad h = 6.626 \times 10^{-34} Js \qquad c = 2.998 \times 10^8 ms^{-1}$$

$$E_n = \frac{-2.18 \times 10^{-18} J}{n^2} Z^2 \qquad \Delta E = E_{final} - E_{initial} \qquad E_K = \frac{1}{2} mv^2$$

$$E_{potential} \propto \frac{q_1 q_2}{r}$$

$$m_{electron} = 9.109 \times 10^{-31} kg \qquad m_{proton} = 1.673 \times 10^{-27} kg$$

$$m_{neutron} = 1.675 \times 10^{-27} kg$$

$$\lambda_{debroglie} = \frac{h}{2v}$$

$$V_{sphere} = \frac{4}{3} \pi r^3 \qquad V_{cylinder} = \pi r^2 h \qquad A_{circle} = \pi r^2$$

		Francium 87 Fr (223)	Cesium 55 CS 132.91	Rubidium 37 Rb 85.47	Potassium 19 39.10	11 11 22.99	6.94	1.01 T 1 .01
**ac	*lanth	Radium 88 Ra (226)	Barium 56 Ba 137.33	Strontium 38 Sr 87.62	Calcium 20 40.08	Magnesium 12 Mg 24.31	Beryllium 4 9.01	N
tinides	anides	89-102 **	57-70 *					
Actinium 89 Ac (227)	Lanthanum 57 La 138.91	103 Lawrencium 103 Lr (262)	Lutetium 71 Lu 174.97	^{Yttrium} 39 88.91	Scandium 21 Sc 44.96	ω		
Thorium 90 Th 232.04	Cerium 58 Ce 140.12	Rutherfordium 104 Rf (267)	Hafnium 72 Hf 178.49	Zirconium 40 21 91.22	Titanium 22 Ti 47.88	4		
Protactinium 91 231.04	Praseodymium 59 Pr 140.91	Dubnium 105 Db (268)	^{Tantalum} 73 Ta 180.95	Niobium 41 92.91	^{Vanadium} 23 50.94	сл		
Uranium 92 238.03	Neodymium 60 Nd 144.24	Seaborgium 106 Sg (271)	Tungsten 74 183.84	Molybdenum 42 MO 95.94	Chromium 24 52.00	თ		
Neptunium 93 (237)	Promethium 61 Pm (145)	вонгіит 107 Вh (272)	^{Rhenium} 75 Re 186.21	Technetium 43 Tc (98)	Manganese 25 Mn 54.94	7		
Plutonium 94 (244)	Samarium 62 Sm 150.36	Hassium 108 HS (270)	^{Osmium} 76 OS 190.23	Ruthenium 44 101.07	55.85	8		
Americium 95 Am (243)	Europium 63 Eu 151.97	109 Mt (276)	Iridium 77 192.22	Rhodium 45 102.9	^{Cobalt} 27 58.93	9		
Curium 96 Cm (247)	Gadolinium 64 Gd 157.25	Darmstadtium 110 DS (281)	Platinum 78 Pt 195.08	Palladium 46 Pd 106.42	58.69	10		
Berkelium 97 BK (247)	^{Terbium} 65 Tb 158.93	Roentgeniun 111 (280)	79 79 196.97	Silver 47 Ag 107.87	соррег 29 63.55	±		
Californium 98 (251)	Dysprosium 66 Dy 162.50	112 Copernicium 112 (285)	Mercury 80 400.59	Cadmium 48 Cd 112.41	^{Zinc} 30 65.39	12		
Einsteinium 99 (252)	Holmium 67 HO 164.93	n Ununtrium 113 (284)	Thallium 81 204.38	114.82	Gallium 31 69.72	Aluminum 13 26.98	Boron 5 В 10.81	13
тетти 100 Fm (257)	Erblum 68 167.26	Ununquadiur 114 Uuq (289)	Pb 207.20	50 50 118.71	Germaniun 32 Ge 72.61	Silicon Si 28.09	Carbon 12.01	14
Mendeleviun 101 (258)	Thulium 69 Tm 168.93	ⁿ Ununpentiu 115 (288)	Bismuth 83 Bi 208.98	Antimony 51 Sb 121.76	Arsenic 33 AS 74.92	Phosphoru 15 P 30.97	Nitrogen 7 14.01	15
102 102 (259)	Vtterbiun 70 Yb 173.0	m Ununhexiu 116 Uuh (293)	Poloniun 84 (209)	Telluriun 52 127.6	^{Seleniun} 34 78.96	s Sulfur 16 32.07	о _{худел} 16.00	16
		Inunsept 117 (294?	Astatine 85 At (210)) ^{Iodine} 53 126.9	Bromin 35 79.9(Chlorin 17 35.45	Fluorin 9 19.00	17
		um Ununoctium 118) (294)	(222)	хепол 54 Хе 0 131.29	в кт 83.80	39.95) 20.18	Heilum 2 4.00